广东阅生活家居科技有限公司广东阅生活总部基地建设项目 环境影响报告书

(送审稿)

建设单位:广东阅生活家居科技有限公司

环评单位:广东顺德环境科学研究院有限公司

二〇二五年七月

编制单位和编制人员情况表

项目编号	if2w55		
建设项目名称	广东闽生活家居科技	有限公司广东阅生活总部基	地建设项目
建设项目类别	18036木质家具制造 制造; 其他家具制造	竹、藤家具制造; 金属家	具制造: 塑料家具
环境影响评价文件类	报告书		
一、建设单位情况	· 家居科/家		
単位名称(盖章)	广东闽生活家居科技	有限公司	
统一社会信用代码	91440606671360023		
法定代表人 (签章)		-1163	
主要负责人(签字)		33	
直接负责的主管人员	(签字)		
二、编制单位情况		8	
単位名称 (盖章)	广东顺德环境科学研	克懿有限公司	
统一社会信用代码	91440606768407545	直	
三、编制人员情况	#		
1. 编制主持人	**Dane 3F		_
姓名	职业资格证书管理号	信用编号	签字
			/
			ν ,

Missistry as Personnel
The People's Republic of China
No. 102046

管理号: 05354443505440623 Fik No.:

※及日州: 2000 →08 H5 H Issued on Issued on

目 录

1	概述	1
	1.1 项目由来及特点	1
	1.2 评价工作程序	1
	1.3 项目评价过程	1
	1.4 项目准入及相关法规政策、规划符合性分析	2
	1.5 关注的主要环境问题	14
	1.6 环境影响评价主要结论	14
2	总则	31
	2.1 编制依据	31
	2.2 评价目的与评价原则	35
	2.3 环境功能区划	36
	2.4 评价因子与评价标准	43
	2.5 评价工作等级和评价范围	53
	2.6 环境保护目标	71
3	建设项目概况与工程分析	75
	3.1 建设项目概况	75
	3.2 生产工艺及影响因素分析	107
	3.3 项目给排水平衡	116
	3.4 物料平衡	116
	3.5 施工期污染源分析	117
	3.6 运营期主要污染源强分析及防治措施	121
	3.7 总量控制	158
4	环境现状调查与评价	159
	4.1 区域环境概况	159
	4.2 地表水环境质量现状与评价	160
	4.3 地下水环境质量现状监测与评价	162
	4.4 土壤环境质量现状监测与评价	170
	4.5 环境空气质量现状监测与评价	179
	4.6 声环境质量现状监测与评价	187
	4.7 生态环境现状调查与评价	188
5	环境影响预测与评价	190

5.1	施工期环境影响分析与评价	190
5.2	运营期水环境影响预测与评价	197
5.3	运营期大气环境影响预测与评价	214
5.4	运营期声环境影响预测与评价	297
5.5	运营期固废环境影响评价	310
5.6	运营期对生态环境的影响评价	313
5.7	运营期环境风险影响评价	314
5.8	土壤环境影响评价	327
5.9	生态环境的影响评价	331
环	竟保护措施及其可行性论证	333
6.1	水污染防治措施及其经济、技术论证	333
6.2	大气污染防治措施及其经济、技术论证	338
6.3	噪声污染防治措施及其经济、技术论证	351
6.4	固体废物污染防治措施及其经济、技术论证	353
6.5	土壤环境防治措施可行性	356
6.6	地下水污染防治措施可行性	357
6.7	土壤污染防治措施可行性	359
6.8	生态保护措施	360
6.9	治理措施可行性结论	360
环	竟影响经济损益分析	361
7.1	经济损益分析	361
7.2	社会损益分析	361
7.3	环境损益分析	362
7.4	结论	363
环	竟管理与监测计划	364
8.1	环境管理	364
8.2	污染物排放清单	365
8.3	环境监测计划	370
8.4	社会公开的信息内容	373
8.5	排污口规范化	373
环	竟影响评价结论	376
9.1	项目概况	376
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 \$\overline{1}\) 6.1 6.2 6.3 6.4 6.5 6.6 6.7 7.2 7.3 7.4 \$\overline{1}\) 8.1 8.2 8.3 8.4 8.5	5.1 施工期环境影响分析与评价 5.2 运营期水环境影响预测与评价 5.3 运营期大气环境影响预测与评价 5.4 运营期声环境影响预测与评价 5.5 运营期固度环境影响评价 5.6 运营期对生态环境的影响评价 5.7 运营期环境风险影响评价 5.8 土壤环境影响评价 5.9 生态环境的影响评价 环境保护措施及其可行性论证 6.1 水污染防治措施及其经济、技术论证 6.2 大气污染防治措施及其经济、技术论证 6.4 固体废物污染防治措施可行性 6.5 土壤环境院验防治措施可行性 6.6 生态保护措施 6.9 治理措施可行性 6.8 生态保护措施 6.9 治理措施可行性结论 环境影响经济损益分析 7.1 经未损益分析 7.1 经未损益分析 7.2 社会损益分析 7.3 环境损益分析 7.4 结论 环境管理与监测计划 8.1 环境管理 8.2 污染物排放清单 8.3 环境监测计划 8.4 社会公开的信息内容 8.5 排污口规范化 8.6 竣工环境保护"三同时"验收一览表 环境影响评价结论 环境影响评价结论

9.2	环境质量现状	376
9.3	污染物排放情况	377
9.4	环境影响及环保措施	378
9.5	环境影响经济损益分析结论	381
9.6	环境管理与监测计划	382
9.7	公众意见采纳情况	382
9.8	综合性评价结论	382

1 概述

1.1 项目由来及特点

1.1.1 项目概况

广东阅生活家居科技有限公司(以下简称"阅生活公司")选址位于广东省佛山市顺德区杏坛镇光华村德彦大道1号之一(见图1.1-1),中心地理坐标:北纬22.783161°,东经113.118682°。公司于2023年6月以"广东阅生活家居科技有限公司总部基地建设项目"为项目名称申报了环境影响报告表,并取得主管部门审批,审批文号为:佛环03环审(2023)40号,审批占地面积为43231.60平方米,总建筑面积121825.8平方米,审批规模为:年产套房家具40000套、软装家具18000套、装饰材料7000套。

截至目前为止,原报批项目没有正式投入生产运行。考虑到市场发展及实际生产需要,企业拟调整产品种类和产量,使用的涂料从水性漆变更为油性漆和 UV 漆,并相应变更生产设备。投产后预计年产套房家具 9 万件、装饰材料 1 万件、全屋定制产品 5 万件,年产值达 20000 万元。

根据《中华人民共和国环境影响评价法》第二十四条"建设项目的环境影响评价文件经批准后,建设项目的性质、规模、地点、采用的生产工艺或者防治污染、防止生态破坏的措施发生重大变动的,建设单位应当重新报批建设项目的环境影响评价文件"。因项目生产规模、原料及生产工艺发生重大变动,需重新报批环评文件。

项目	重新报批前	重新报批后
地点	佛山市顺德区杏坛镇顺德光华村 SD-C	地点不变,明确为"广东省佛山市顺德区杏坛镇光
地点	(XT) -03-04-01-19-03 地块	华村德彦大道1号之一"
规模	年产套房家具 40000 套, 软装家具	年产套房家具9万件、装饰材料1万件、全屋定
	18000 套,家具饰品 7000 套	制产品 5 万件
涉喷涂		油性底漆、油性面漆、稀释剂、固化剂、稀释剂
原辅材	水性漆、水性漆固化剂	(擦拭用)、UV 底漆、UV 面漆、UV 漆稀释剂、
料		清洗剂(异丙醇)
生产工	木工开料、木加工、拼板、喷漆、烘干、	木工开料、木加工、拼板、喷漆、烘干、开绵、
艺	开绵、贴绵、车裁、机加工等	贴绵、车裁、机加工等
	木加工粉尘经集气罩收集后,经各栋厂	木工粉尘收集并经"布袋除尘器"处理后引至 40m
	房独立配套的"布袋除尘器"处理后引	排气筒 G2、G6、G8、G12 排放。
主要废	至各厂房楼顶 40m 排气筒 G1~G8 排	厂房二油性漆喷漆废气收集并经水帘柜除漆雾,
王安成 气污染	放; 喷漆及烘干废气经整室收集, 拼版	然后和烘干废气一起通过"二级水喷淋+干式过滤
防治措	及喷胶废气分别经集气罩收集,喷漆废	+沸石转轮吸附-脱附+催化燃烧"废气处理设施进
施施	气先经"水帘柜+水喷淋+干式过滤"	行处理,处理后引至 40m 排气筒 G1 排放;
旭	除漆雾后,再与烘干、拼板、喷胶废气	厂房二 UV 漆喷涂废气收集并经过滤棉除漆雾,
	一并经"活性炭吸附浓缩+催化燃烧"	然后和烘干废气一起通过"水喷淋+干式过滤器+
	处理后通过楼顶 40m 排气筒 G9~G10	活性炭吸附"废气处理设施进行处理,处理后引

项目	重新报批前	重新报批后
	排放;油磨工序的木加工粉尘经集气罩	至 40m 排气筒 G13 排放;
	处理后引至楼顶 40m 排气筒 G11~G12	厂房三油性漆喷漆废气收集并经水帘柜除漆雾,
	排放	然后和烘干废气一起通过2套"二级水喷淋+干式
		过滤"处理后一并经"沸石转轮吸附-脱附+催化
		燃烧"废气处理设施进行处理,处理后引至 40m
		排气筒 G7 排放;
		催化燃烧装置产生的天然气燃烧废气随喷涂烘干
		废气一起经排气筒 G1、G7 排放;
		胶水废气收集并经"活性炭吸附"处理后引至 40m
		排气筒 G4、G10、G14 排放;
		木磨、油磨工序的粉尘收集并经"水帘柜"处理
		后引至 40m 排气筒 G3、G5、G9、G11 排放;
		五金抛光工序的粉尘收集并经"水帘柜"处理后
		在车间内无组织排放。

公司以"广东阅生活家居科技有限公司广东阅生活总部基地建设项目"(以下简称"本项目")名称重新报批环评文件。本报告根据变动后的规模按新建项目性质进行评价。

变动后本项目建设地点、占地及建筑面积保持不变,产能变更为年产套房家具 9 万件、装饰材料 1 万件、全屋定制产品 5 万件。总投资 30600 万元,环保投资约 1140 万元。项目含喷漆工序,其中溶剂型涂料(含稀释剂)年用量 80.757t。

1.1.2 环评委托

根据《中华人民共和国环境保护法》、《中华人民共和国环境影响评价法》和国务院令第 682 号《国务院关于修改〈建设项目环境保护管理条例〉的决定》等有关法律法规的规定,本项目须执行环境影响审批制度。根据《建设项目环境影响评价分类管理名录》(2021 年版,自 2021 年 1 月 1 日起施行),项目喷漆工序使用溶剂型涂料,溶剂型涂料(含稀释剂)年用量大于 10 吨,属于"十八、家具制造业 21"中的"36、木质家具制造 211;年用溶剂型涂料(含稀释剂)10 吨及以上的",需编制建设项目环境影响报告书。为此,阅生活公司委托广东顺德环境科学研究院有限公司承担本项目的环境影响评价工作。

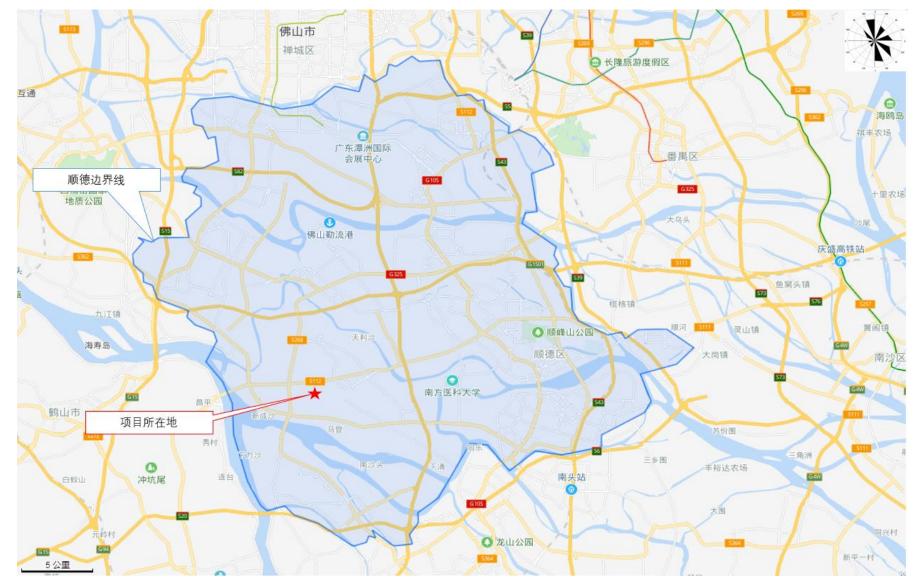


图 1.1-1 本项目地理位置图

1.2 评价工作程序

根据《建设项目环境影响评价技术导则 总纲》(HJ2.1-2016),本次环评工作分三个阶段,本项目环境影响评价所采用的工作程序见图 1.2-1。

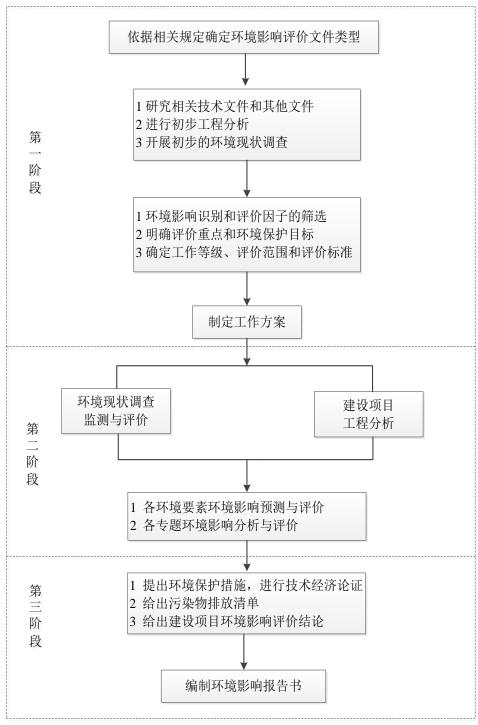


图 1.2-1 建设项目环境影响评价工作程序图

1.3 项目评价过程

广东顺德环境科学研究院有限公司于 2024 年 9 月 19 日接受项目委托,然后成立了项目组,对本项目所在区域及其周围环境进行了详细的调查及现场踏勘。

建设单位于2024年9月25日在广东顺德环境科学研究院有限公司官方网站上发布环境影响评价第一次信息公示。

环评单位于 2025 年 1 月 14 日~2025 年 1 月 20 日在评价范围内开展环境现状调查和监测工作。

环评单位根据相关的法规、标准和评价技术导则的要求和委托方——佛山市顺德区 庆菱科技有限公司提供的资料,结合本项目的特点,编制了《广东阅生活家居科技有限 公司广东阅生活总部基地建设项目环境影响报告书(征求意见稿)》。

建设单位于 2025 年 06 月 09 日~2025 年 06 月 20 日在广东顺德环境科学研究院有限公司官方网站上公开了《广东阅生活家居科技有限公司广东阅生活总部基地建设项目环境影响报告书(征求意见稿)》,并在报纸上进行信息公示,同时在项目所在地采取张贴告示的方式进行环境影响评价第二次信息公示。

此后,环评单位结合公众参与调查结果汇总情况,与建设单位深入沟通完善厂区环境保护措施,形成《广东阅生活家居科技有限公司广东阅生活总部基地建设项目环境影响报告书(送审稿)》,报送环保主管部门进行审查。

1.4 项目准入及相关法规政策、规划符合性分析

1.4.1 产业政策及"三线一单"准入判定分析

(1) 与国家和地方产业政策相符性分析

1)产业政策

本项目主要从事套房家具、装饰材料等家具的加工生产,使用设备、生产工艺、生产品等均不属于《产业结构调整指导目录(2024年本)》中的限制类、淘汰类。

2) 负面清单

根据《市场准入负面清单(2025年版)》,本项目属于市场准入负面清单以外的行业、领域、业务范围,各类市场主体皆可依法平等进入,符合文件相关要求。

3) 是否高污染高风险产品

本项目生产部分产品使用溶剂型涂料涂装,为《环境保护综合名录(2021 年版)》中的高污染产品(序号 47)。但项目使用高流量低压[HVLP]喷漆工艺,属于名录附表中的"除外工艺"(序号 13)。

4) 是否"两高"项目

本项目行业类别为 C2110 木质家具制造,不属于《关于加强高耗能、高排放建设项目生态环境源头防控的指导意见》(环环评〔2021〕45 号)、《广东省"两高"项目管理目录(2022 年版)》及《广东省发展改革委关于印发<广东省坚决遏制"两高"项目盲目发展的实施方案>的通知》(粤发改能源〔2021〕368 号)中的"两高"项目范围。

综合上述,本项目符合上述国家和地方产业政策的要求。

(2) 与广东省、佛山市"三线一单"文件相符性分析

1) 建设项目与广东省"三线一单"符合性分析

根据《广东省人民政府关于印发广东省"三线一单"生态环境分区管控方案的通知》(粤府〔2020〕71号),环境管控单元分为优先保护、重点管控和一般管控单元三类。根据该成果,全省一般生态空间面积27741.66平方公里,占全省陆域国土面积的15.44%。全省优先保护单元727个,重点管控单元684个,一般管控单元501个,共计1912个。

根据广东省环境管控单元图,本项目选址所在区域属于该管控方案中的<u>重点管控单元(ZH44060620005 杏坛镇重点管控区)</u>。通过广东省三线一单平台(https://www-app.gdeei.cn/l3a1/public/home)运行分析(输入项目选址坐标、环评类别和行业类别),其结果见图 1.4-1,项目位于<u>生态空间一般管控区、水环境城镇生活污染重点管控区</u>、大气环境一般管控区、高污染燃料禁燃区。

2) 建设项目与佛山市"三线一单"符合性分析

根据《佛山市"三线一单"生态环境分区管控方案(2024年版)》的通知(佛环(2024)20号),环境管控单元分为优先保护单元、重点管控单元和一般管控单元3类。通过开展生态空间识别、水、大气、土壤环境评价、自然资源开发利用评估,确定生态环境及自然资源管控分区,综合各管控分区拟合行政村、乡镇、街道、省级以上产业园区等行政边界,全市共划定97个环境管控单元(见附件1、2)。其中,优先保护单元43个,占国土面积的17.85%,主要涵盖生态保护红线、一般生态空间、饮用水水源保护区、环境空气质量一类功能区等区域;重点管控单元43个,占国土面积的66.35%,主要包括工业集聚、人口集中、环境质量超标、可能影响饮用水源安全、布局比较敏感、扩散条件较差区域;一般管控单元11个,占国土面积的15.8%,为优先保护单元、重点管

控单元以外的其他区域。根据(佛环〔2024〕20号),本项目选址所在区域属于该管控方案中的重点管控单元。

3) 建设项目与所在地"三线一单"符合性分析

a生态保护红线

根据《广东省人民政府关于印发广东省"三线一单"生态环境分区管控方案的通知》(粤府(2020)71号)、《佛山市生态环境局关于印发<佛山市"三线一单"生态环境分区管控方案(2024年版)>的通知》(佛环〔2024〕20号)和《佛山市顺德区人民政府关于印发佛山市顺德区"三线一单"生态环境分区管控方案的通知》(顺府发〔2021〕11号),项目选址单元不属于"涵盖生态保护红线、一般生态空间、饮用水水源保护区、环境空气质量一类功能区等区域的优先保护区"。

因此,项目不涉及生态保护红线。

b环境质量底线

根据佛山市生态环境局顺德分局发布的《佛山市生态环境局顺德分局关于发布<2023 年度佛山市顺德区生态环境状况公报>的通知》(佛环顺函〔2024〕44号〕,2023年项目所在区域的 O3 超过《环境空气质量标准》(GB3095-2012)及其修改单二级标准,其余五项污染物指标浓度均能达到《环境空气质量标准》(GB3095-2012)及其修改单二级标准。因此,顺德区大气环境质量现状不达标,顺德区属于不达标区。根据补充监测,其他污染物臭气浓度满足《恶臭污染物排放标准》(GB14554-93)二级新扩改建的标准要求,总悬浮颗粒物符合《环境空气质量标准》(GB3095-2012)二级标准及 2018年修改单,二甲苯、总挥发性有机物满足《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D 要求,非甲烷总烃满足《大气污染物综合排放标准详解》标准要求;2023年全区地表水环境质量保持稳定,5个饮用水源水质状况全部为优,年均值水质均达到II类;2个国控断面(乌洲、顺德港)、3个省控断面(杨滘、海凌、飞鹅山)均符合相应的水质目标。项目纳污水体顺德支流的水质达到了III类标准要求,水质良好。

本项目生活污水经三级化粪池、食堂废水经隔油隔渣预处理后达到广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准后排入杏坛污水处理厂处理,不直接向地表水体排放。本项目水帘柜废水、喷淋塔废水委托有相应处理能力的工业废水处理单位处理;项目废气经收集处理后达标排放,大气污染物对周围环境影响不大。因此本项目的建设不会突破当地环境质量底线。

综合分析,本项目的建设不会突破当地环境质量底线。

c资源利用上线

本项目运营期所用的资源主要为水资源、电能。

本项目给水由市政供水接入,电能由区域电网供应,符合《佛山市顺德区人民政府关于印发佛山市顺德区"三线一单"生态环境分区管控方案的通知》(顺府发〔2021〕11号)文件中的能源资源利用要求,同时本项目所用以上资源占比极少,不会突破当地的资源利用上线。项目所在地用途为工业用途,符合当地土地规划要求。

d生态环境管控单元准入清单

根据《佛山市顺德区人民政府关于印发佛山市顺德区"三线一单"生态环境分区管控方案的通知》(顺府发〔2021〕11号),结合省"三线一单"平台分析成果,项目所在地属生态空间一般管控区(编号: YS4406063110001),无特殊管控要求;属顺德区高污染燃料禁燃区(编号: YS4406062540001):禁止使用高污染燃料;属杏坛镇重点管控区(编号: ZH44060620005),该管控区要素细类包括: 顺德支流佛山市杏坛镇控制单元(编号: YS4406062220011)、杏坛镇一般管控单元(编号: YS4406063310001)等。以上管控单元准入清单符合性分析见下表 1.4-1 所示。

通过表 1.4-1 分析本项目符合生态环境管控单元准入清单管控要求。

综合以上分析,本项目符合顺德区"三线一单"管控要求。

图1.4-1 广东省"三线一单"应用平台准入分析截图

表1.4-1 项目与广东省佛山市顺德区重点管控单元5准入清单的相符性分析

管控维度	管控要求	项目情况	符合性
	1-1.【生态/禁止类】单元内的一般生态空间,主导生态功能为水土保持,禁止在25度以上的陡坡地开垦种植农作物,禁止在崩塌、滑坡危险区、泥石流易发区从事采石、取土、采砂等可能造成水土流失的活动。	不涉及	符合
	1-2.【产业/鼓励引导类】重点发展新材料、智能家居、先进装备制造业、 汽车配件等产业以及军民融合产业,提升发展塑料专业市场,培育智能家 居创新创业产业链,依托顺德新港发展临港加工和物流产业,发展现代农 业。	不涉及	符合
	1-3.【产业/综合类】系统推进村级工业园升级改造,腾出连片空间,布局产业集聚区和主题产业园,推动工业项目入园集聚发展。新增工业制造业用地原则上安排在产业集聚区内,产业集聚区外原则上不鼓励工业及物流仓储用地的新建与改造。	不涉及	符合
区域布局管 控	1-4.【产业/综合类】产业聚集区所属地块内的工业用地或企业与村庄、学校等环境敏感点之间应设置合理的大气环境防护距离,并通过绿化带进行有效隔离;聚集区规划布局应注重大气污染排放企业应尽量避免布局在居住用地的常年主导风向的上风向。	项目距离最近环境敏感目标北面光华村居民区250m。	符合
	1-5.【产业/限制类】受纳水体或监控断面不达标的,不得新建、扩建向河涌直接排放废水的项目(具有减排效益的区域废水集中处理设施除外)。新建、扩建含蚀刻工序的线路板生产项目和化工项目应在配套污水集中处置的工业园区或生活污水管网覆盖区域内建设;纯加工型印花项目,含酸洗、磷化的金属表面处理、金属制品项目(与自身高新技术企业配套的和区级及以上重点项目除外),含酸洗、喷涂、化学抛光、电解等涉及废水排放工艺的不锈钢型材加工项目(与自身高新技术企业配套的和区级及以上重点项目除外),应进入以此类项目为主导产业、有相应废水集中治理设施的工业园区,实现集中治污。	《地表水环境质量标准》(GB3838-2002)之III类、V类标准,水质达标。项目不属于以下项目:含蚀刻工序的线路板生产项目和化工项目,纯加工型印花项目,含酸洗、磷化的金属表面处理、金属制品项目,含酸洗、喷	
	1-6.【产业/综合类】划定家具生产优先发展区域,优先发展区外不再新建 涉及涂装工艺的木质家具制造项目。	项目属于涉及涂装工艺的木质家具制造项目,根据《杏坛镇人民政府关于将杏坛镇德彦大道东西片区纳入杏坛镇家具生产优先发展区的函》(杏府函〔2022〕88号),	符合

管控维度	管控要求	项目情况	符合性
		项目所在地为家具生产优先发展区域(见图1.4-2)。	
	1-7.【水/限制类】严格限制在右滩水厂、均安水厂饮用水水源保护区上游和周边区域建设列入"高污染、高环境风险"产品名录等可能影响水环境安全的项目。	本项目食堂废水经隔油隔渣、生活污水经三级化粪处理 达标后通过市政管道排入杏坛污水处理厂,不直接向河 涌排放;且项目不属于"高污染、高环境风险"产品名录 等可能影响水环境安全的项目。	
	1-8.【土壤/禁止类】禁止新建、扩建增加重点防控的重金属污染物排放的建设项目。	项目不涉及重点防控的重金属污染物的排放。	符合
	2-1.【能源/鼓励引导类】推广节能技术,加快发展绿色货运与现代物流。	不涉及	符合
	2-2.【能源/鼓励引导类】推广新能源汽车应用和充电基础设施建设,积极推动重卡 LNG 加气站、充电基础设施、加氢站建设。	不涉及	符合
	IBI (7) 24 P (24 (B) 60 \$2 (F) F (D) F (B)	坝日个属丁新建局能耗坝日。	符合
能源资源利 田	字位)	目 生	
	2-5.【土地资源/限制类】落实单位土地面积投资强度、土地利用强度等建设用地控制性指标要求,提高土地利用效率。	项目单位土地面积投资强度、土地利用强度等建设用地 控制性指标均满足相关标准要求,土地利用效率较高。	符合
	2-6.【岸线/禁止类】严格水域岸线用途管制,新建项目一律不得违规占用水域。严禁破坏生态的岸线利用行为和不符合其功能定位的开发建设活动,严禁以各种名义侵占河道、围垦湖泊、非法采砂等。	项目不涉及占用水域。	符合
污染物排放	3-1.【水/限制类】城镇新区建设实行雨污分流,逐步推进初期雨水收集、处理和资源化利用。住宅、商业体、学校、市场等城镇开发建设项目应当配套或者同步计划建设公共排水设施,公共排水设施或自建排污水设施未能投产运行的,以上涉水项目不得投入使用。新建小区严格实施雨污分流,阳台、露台等污水接入污水收集系统,将生活污水"应截尽截"。做好大型楼盘、集贸市场、餐饮以及学校等4大类排水户污水接入市政管网工作。	项目食堂废水经隔油隔渣、生活污水经三级化粪处理达 标后通过市政管道排入杏坛污水处理厂,尾水排入北马 河后汇入顺德支流。	
	3-2.【水/综合类】杏坛镇重点河涌水质上年度未达到水环境环境质量目标的,需组织编制、系统实施、向社会公开区域重点水污染物减排计划并明确"替代量",本年度新建、改建、扩建项目新增水环境重点污染物实行区	标后通过市政管道排入杏坛污水处理厂,尾水排入北马	

管控维度	管控要求	项目情况	符合性
	域"减二增一"替代(工业、生活或综合集中废水处理设施、民生项目除外)。		
	3-3.【水/综合类】区域内应合理规划建设工业或综合集中废水处理设施。		
	逐步推进工业集聚区"污水零直排区"建设,开展排水单元工业废水、生活		符合
	污水、雨水分类收集、分质处理,确保园区"管网全覆盖、雨污全分流、污	化粪处理达标后通过市政管道排入杏坛污水处理)。	13 11
	水全收集、处理全达标"。		
	3-4.【水/综合类】结合村级工业园改造,全面提升产业层次与集聚度,促 进污染集中整治。	不涉及	符合
	3-5.【水/综合类】稳步推进排水设施"三个一体化"管理模式,补齐城乡污水		
	收集和处理短板,推动杏坛污水处理厂提质增效,加快消除城中村、老旧城区、城乡结合部等污水收集管网空白区,逐步实现城乡污水收集处理全覆盖。2025年前完成杏坛污水处理厂扩建,尾水应执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准及《广东省水污染物排放限值》(DB44/26-2001)的较严值。	合坛污水处理)尾水执行《城镇污水处理)污染物排放标准》(GB18918-2002)一级A标准及《广东省水污染物排放限值》(DB44/26-2001)的较严值	
	3-6.【水/综合类】近期保留桑麻村、逢简村、吉祐村、安富村等现状农村污水分散式处理设施,继续完善污水支管网建设,提高污水收集处理率,新建龙潭村、吉祐村、右滩村、南朗村、光华村、东村、北水村等农村分散式生活污水处理设施,其余行政村(社区)继续完善污水管网建设,收集农村污水进入市政污水系统,有条件的区域实施雨污分流改造,到 2030年全面雨污分流,污水纳入杏坛城镇污水处理系统。	项目所在地雨污分流,生活污水纳入杏坛城镇污水处理 系统	符合
	3-7.【水/综合类】产业集聚区和主题园区内做好污水管网和污水集中处理设施的配套保障,确保废水收集到城镇污水处理厂、园区污水处理厂或分散式污水处理设施集中处置。	项目食堂废水经隔油隔渣、生活污水经三级化粪处理达 标后通过市政管道排入杏坛污水处理厂。	符合
	3-8.【大气/综合类】大力推进低 VOCs 含量原辅材料替代,加快涉 VOCs 重点行业的生产工艺升级改造,推行自动化生产工艺,对达不到要求的VOCs 收集及治理设施进行整治提升,逐步淘汰低效 VOCs 治理设施。		符合

管控维度	管控要求	项目情况	符合性
		(GB/T38597-2020)"表4辐射固化涂料中VOC含量的要	
		求"中"木质基材-水性"限值要求(≤200g/L);已调配的	
		油性面漆、油性底漆符合《低挥发性有机化合物含量涂	
		料产品技术要求》(GB/T38597-2020)"表2溶剂型涂料	
		中VOC含量的要求"中"木器涂料"限值要求(≤420g/L);	
		喷枪清洗剂现阶段暂无法实施低挥发性原辅材料替代,	
		具体涉VOCs原辅材料不可替代性分析见3.2.4章节。	
	3-9.【土壤/限制类】作为重金属污染重点防控区,区域内重点重金属排放	项目不涉及重金属排放。 	符合
	心里尺帆小垣。		11 11
	4-1.【水/综合类】加强单元内右滩水厂、均安水厂饮用水水源保护区周边	不涉及	符合
	环境风险源管控,完善突发环境事件应急管理体系。		11 11
	4-2.【水/综合类】杏坛污水处理厂、工业污水集中处理设施应采临取有效		
	措施,防止事故废水直接排入水体。完善污水处理厂在线监控系统联网,	不涉及	符合
	实现污水处理厂的实时、动态监管。		
	4-3.【风险/综合类】加强环境风险分级分类管理,强化金属制品、有色金		
	属和压延加工、化学原料和化学品制造业等涉重金属、化工行业企业及工	不涉及	符合
	业园区等重点环境风险源的环境风险防控。		

图 1.4-2 纳入杏坛镇家具生产优先发展区示意图

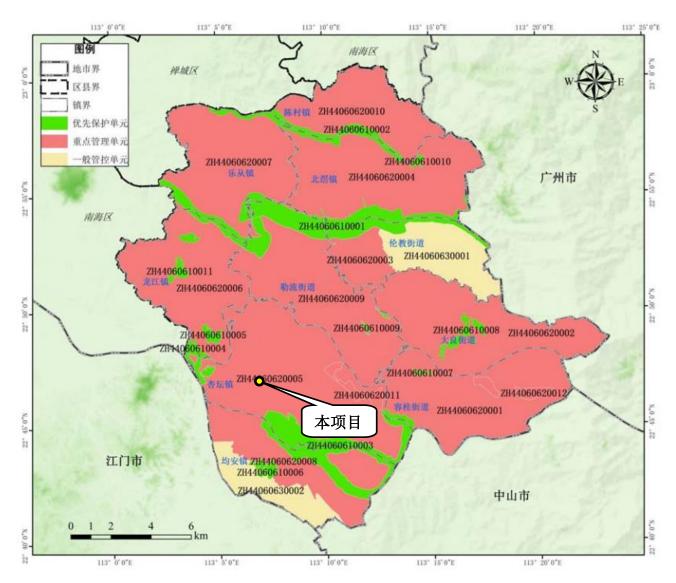


图1.4-3 环境管控单元图

1.4.2 环保相关法律、规划及挥发性有机物治理政策相符性判定

本项目与国家和地方近年发布的有机污染物治理政策的相符性分析见表 1.4-2。

1.4.3 项目选址与土地利用规划相符性判定

(1) 选址符合性分析

项目选址位于广东省佛山市顺德区杏坛镇光华村德彦大道 1 号之一,所在区域土地 用地规划为工业用地,项目没有占用基本农业用地和林地,选址不在饮用水源保护区内, 周围没有风景名胜区、生态脆弱带,符合城市建设和环境功能区规划的要求,且具有水 和电等供应有保障、交通便利等条件。

(2)与《广东省人民政府办公厅关于印发广东省"节地提质"攻坚行动方案 (2023-2025年)的通知》(粤办函〔2023〕57号)等相符性分析

根据《产业集聚区和主题园区划定图》(图 1.4-4),项目所在地位于产业集聚区 (顺德杏坛临港配套产业集聚区)和主题园区(顺德(杏坛)新材料和智慧家居产业园) 内,符合《广东省"节地提质"攻坚行动方案》(2023-2025 年)的要求。

(3)与《中共中央 国务院关于建立国十空间规划体系并监督实施的若干意见》、《中共中央办公厅 国务院办公厅关于在国土空间规划中统筹划定落实三条控制线的指导意见》、《全国国土空间规划纲要(2021-2035 年)》、《自然资源部关于做好城镇开发边界管理的通知(试行)》(自然资发〔2023〕193 号)相符性分析

根据《中共中央 国务院关于建立国土空间规划体系并监督实施的若干意见》、《中共中央办公厅 国务院办公厅关于在国土空间规划中统筹划定落实三条控制线的指导意见》、《全国国土空间规划纲要(2021-2035 年)》,建立国土空间规划体系并监督实施,将主体功能区规划、土地利用规划、城乡规划等空间规划融合为统一的国土空间规划,实现"多规合一",强化国土空间规划对各专项规划的指导约束作用。

根据《自然资源部关于做好城镇开发边界管理的通知(试行)》(自然资发(2023)193 号),各地要切实将党中央、国务院批准的"三区三线"划定成果作为调整经济结构、 规划产业发展、推进城镇化不可逾越的红线。

根据企业提供的《佛山市顺德区建设用地规划条件(顺规条件(2020)0156号-S)》及《建设用地规划许可证》(地字第 440606202100071号),项目用地属于工业用地。根据前文分析,本项目符合广东省、佛山市、佛山市顺德区"三线一单"生态环境分区管控要求,因此,本项目符合《中共中央 国务院关于建立国十空间规划体系并监督实

施的若干意见》、《中共中央办公厅 国务院办公厅关于在国土空间规划中统筹划定落实三条控制线的指导意见》、《全国国土空间规划纲要(2021-2035 年)》、《自然资源部关于做好城镇开发边界管理的通知(试行)》(自然资发〔2023〕193 号)要求。

(4)项目选址与生态保护红线、永久基本农田、城镇开发边界的相对位置关系分析

根据广东省地理信息公共服务平台公布的"广东省三区三线专题图",项目不在生态保护红线范围(图 1.4-5)、距离最近的永久基本农田 55m(图 1.4-6)、位于城镇开发区(图 1.4-7)。

因此本项目选址合理,与土地利用规划相符合。

1.5 关注的主要环境问题

根据本项目的特点及周边的环境特征,通过环境影响评价,了解建设项目对其周围 环境影响的程度和范围,分析项目运营过程中对环境的影响,分析项目的环保措施是否 可行。根据本项目的特点以及周边的环境特征,本环评关注的主要环境问题如下:

- 1、本项目在营运期间排放的废气污染物对周边大气环境和环境敏感点的影响程度。
- 2、结合物质危险性分析、环境风险潜势分析和生产过程风险识别等结果,提出环境风险防范措施及应急要求,最大限度减少环境事故的发生概率。

1.6 环境影响评价主要结论

本项目符合国家和广东省产业政策的要求;符合所在地"三线一单"管控方案要求。符合广东省、珠三角地区、佛山市等各级环境保护规划的要求;项目在营运期会产生一定的废水、废气、噪声和固体废弃物等污染,本项目通过采取可行的污染防治措施,可实现废水、废气、噪声、固体废物的达标排放;项目合理布局,减少对周围环境影响;在落实本报告提出的各项污染防治措施和风险防范措施的前提下,整体环境风险可控,环境保护措施经济技术可满足长期稳定达标要求;项目的建设与项目所在区域的环境功能要求相符合,按要求落实环境管理与监测计划,不会对区域环境质量造成明显影响。项目在建设规模、总平面布置、环境保护方面是可行的,将会取得良好的环境效益。

从环境保护角度而言,本项目的建设可行。

表 1.4-2 项目与相关法律、规划及有机污染物治理政策的相符性

序号	法律、政策要求	工程内容	符合性
1. 《中	华人民共和国大气污染防治法》(2018.10.26 修正,2018.10.26 施行)		
	制定燃煤、石油焦、生物质燃料、涂料等含挥发性有机物的产品、烟花 爆竹以及锅炉等产品的质量标准,应当明确大气环境保护要求。	本项目使用的油性底漆、油性面漆、UV 底漆、UV 面漆等按相应比例调配后,最终在施工状态下 VOCs 含量满足《低挥发性有机化合物含量涂料产品技术要求》(GB/T 38597-2020)的相关要求,水性胶水和白乳胶无需调配即可使用,能够满足《胶粘剂挥发性有机化合物限量》(GB33372-2020)的相关要求;项目使用的稀释剂(擦拭用)密度为 0.852g/cm ¾ 挥发性为 852g/L,异丙醇清洗剂溶液密度为 0.7855g/cm ¾ 挥发性为 785.5g/L,低于《清洗剂挥发性有机化合物含量限值》(GB 38508-2020)中表 1 有机溶剂清洗剂 VOC 含量≤900g/L 的限值要求,目前油性漆和 UV 漆喷枪一般使用有机溶剂进行擦拭、清理,暂无低 VOC 清洗剂替代,具有不可替代性。	符合
2. 《广东	《省大气污染防治条例》		
	珠江三角洲区域禁止新建、扩建国家规划外的钢铁、原油加工、乙烯生产、造纸、水泥、平板玻璃、除特种陶瓷以外的陶瓷、有色金属冶炼等 大气重污染项目。		符合
2.2	新建、改建、扩建排放挥发性有机物的建设项目,应当使用污染防治先进可行技术。下列产生含挥发性有机物废气的生产和服务活动,应当优先使用低挥发性有机物含量的原材料和低排放环保工艺,在确保安全条件下,按照规定在密闭空间或者设备中进行,安装、使用满足防爆、防静电要求的治理效率高的污染防治设施;无法密闭或者不适宜密闭的,应当采取有效措施减少废气排放:(一)石油、化工、煤炭加工与转化等含挥发性有机物原料的生产;(二)燃油、溶剂的储存、运输和销售;(三)涂料、油墨、胶粘剂、农药等以挥发性有机物为原料的生产;(四)涂装、印刷、粘合、工业清洗等使用含挥发性有机物产品的生产活动;(五)其他产生挥发性有机物的生产和服务活动。	项目属于(三)涂料、油墨、胶粘剂、农药等以挥发性有机物为原料的生产,VOCs治理设施将采取防止火灾爆炸的安全设计。项目主要进行木质家具的喷涂,项目所用涂料、胶粘剂均属于低 VOCs含量原料。 项目喷涂废气处理工艺属于《排污许可证申请与核发技术规范 家	符合
2.3	工业涂装企业应当使用低挥发性有机物含量的涂料,并建立台账,如实记录生产原料、辅料的使用量、废弃量、去向以及挥发性有机物含量并向县级以上人民政府生态环境主管部门申报。台账保存期限不少于三年。	项目所用涂料、胶粘剂均属于低 VOCs 含量原料。企业建成后将建立台账,如实记录生产原料、辅料的使用量、废弃量、去向以及挥发性有机物含量并向县级以上人民政府生态环境主管部门申报。台账保存期限不少于五年。	ケケ人

序号	法律、政策要求	工程内容	符合性
3. 关于	印发《重点行业挥发性有机物综合治理方案》的通知(环大气〔2019〕	53 号)	
3.1	大力推进源头替代。通过使用水性、粉末、高固体分、无溶剂、辐射固化等低 VOCs 含量的涂料,水性、辐射固化、植物基等低 VOCs 含量的油墨,水基、热熔、无溶剂、辐射固化、改性、生物降解等低 VOCs 含量的胶粘剂,以及低 VOCs 含量、低反应活性的清洗剂等,替代溶剂型涂料、油墨、胶粘剂、清洗剂等,从源头减少 VOCs 产生。工业涂装、包装印刷等行业要加大源头替代力度;化工行业要推广使用低(无)VOCs含量、低反应活性的原辅材料,加快对芳香烃、含卤素有机化合物的绿色替代。企业应大力推广使用低 VOCs 含量木器涂料、车辆涂料、机械设备涂料、集装箱涂料以及建筑物和构筑物防护涂料等,在技术成熟的行业,推广使用低 VOCs 含量油墨和胶粘剂。	项目所用涂料、胶粘剂均属于低 VOCs 含量原料。	符合
3.2	重点对含 VOCs 物料(包括含 VOCs 原辅材料、含 VOCs 产品、含 VOCs 废料以及有机聚合物材料等)储存、转移和输送、设备与管线组件泄漏、敞开液面逸散以及工艺过程等五类排放源实施管控,通过采取设备与场所密闭、工艺改进、废气有效收集等措施,削减 VOCs 无组织排放。	加口排放发生 喷烧 喷压烧及泄土发生电层处闭压压吹焦 吹焦	符合
3.3	使用先进生产工艺。通过采用全密闭、连续化、自动化等生产技术,以及高效工艺与设备等,减少工艺过程无组织排放。挥发性有机液体装载优先采用底部装载方式。工业涂装行业重点推进使用紧凑式涂装工艺,推广采用辊涂、静电喷涂、高压无气喷涂、空气辅助无气喷涂、热喷涂等涂装技术,鼓励企业采用自动化、智能化喷涂设备替代人工喷涂,减少使用空气喷涂技术	本项目设直使用 2 条 UV 漆喷涂线,自动喷涂规模占全户总喷涂规模 50%以上,UV 漆喷涂线为往复式喷涂技术,手工喷漆主要喷涂套房家具、装饰材料和全屋定制家具中的不规则产品。	
3.4	提高废气收集率。遵循"应收尽收、分质收集"的原则,科学设计废气收集系统,将无组织排放转变为有组织排放进行控制。采用全密闭集气罩或密闭间的,除行业有特殊要求外,应保持微负压状态,并根据相关规范合理设置通风量。采用局部集气罩的,距集气罩开口面最远处的 VOCs无组织排放位置,控制风速应不低于 0.3 米/秒,有行业要求的按相关规定执行。	[而且以"应收尽收。分质收集"为原则。	1
3.5	推进建设适宜高效的治污设施。企业新建治污设施或对现有治污设施实施改造,应依据排放废气的浓度、组分、风量,温度、湿度、压力,以及生产工况等,合理选择治理技术。鼓励企业采用多种技术的组合工艺,提高 VOCs 治理效率。低浓度、大风量废气,宜采用沸石转轮吸附、活	生产工况等,合理选择治理技术。油性漆喷涂废气 TVOC 浓度较高,但难以回收,故采用沸石转轮吸附/脱附+CO 技术处理,同时	符合

序号	法律、政策要求	工程内容	符合性
	性炭吸附、减风增浓等浓缩技术,提高 VOCs 浓度后净化处理;高浓度	UV 漆喷涂产生的有机废气较少,考虑经济可行性,UV 喷涂线配	
	废气,优先进行溶剂回收,难以回收的,宜采用高温焚烧、催化燃烧等	套"过滤棉+水喷淋+干式过滤器+活性炭吸附"进行处理。	
	技术。油气(溶剂)回收宜采用冷凝+吸附、吸附+吸收、膜分离+吸附		
	等技术。低温等离子、光催化、光氧化技术主要适用于恶臭异味等治理;		
	生物法主要适用于低浓度 VOCs 废气治理和恶臭异味治理。非水溶性的		
	VOCs 废气禁止采用水或水溶液喷淋吸收处理。采用一次性活性炭吸附		
	技术的,应定期更换活性炭,废旧活性炭应再生或处理处置。有条件的		
	工业园区和产业集群等,推广集中喷涂、溶剂集中回收、活性炭集中再		
	生等,加强资源共享,提高 VOCs 治理效率。		
	强化源头控制,加快使用粉末、水性、高固体分、辐射固化等低 VOCs		
3.6	含量的涂料替代溶剂型涂料。重点区域汽车制造底漆大力推广使用水性	 项目所用涂料、胶粘剂均属于低 VOCs 含量原料。	符合
3.0	涂料,乘用车中涂、色漆大力推广使用高固体分或水性涂料,加快客车、	次百////Jin//////	11 H
	货车等中涂、色漆改造。		
	有效控制无组织排放。涂料、稀释剂、清洗剂等原辅材料应密闭存储,		
	调配、使用、回收等过程应采用密闭设备或在密闭空间内操作,采用密	 项目使用的含 VOCs 原辅材料均密闭存储,调配、喷涂、烘干、流	
3.7	闭管道或密闭容器等输送。除大型工件外,禁止敞开式喷涂、晾(风)	平及固化过程均整室密闭或管道收集废气。	符合
	干作业。除工艺限制外,原则上实行集中调配。调配、喷涂和干燥等 VOCs	1 次国九及任为正主山内以自起伏未放 (。	
	排放工序应配备有效的废气收集系统。		
	推进建设适宜高效的治污设施。喷涂废气应设置高效漆雾处理装置。喷	 项目油性漆喷涂及烘干配套"水帘柜+二级水喷淋+干式过滤器+沸	
	涂、晾(风)干废气宜采用吸附浓缩+燃烧处理方式,小风量的可采用一	石转轮吸附/脱附+CO"进行处理; UV 喷涂线配套"过滤棉+水喷淋+	
3.8	次性活性炭吸附等工艺。调配、流平等废气可与喷涂、晾(风)干废气	干式过滤器+活性炭吸附"进行处理,胶水废气配套"活性炭吸附"	符合
	一并处理。使用溶剂型涂料的生产线,烘干废气宜采用燃烧方式单独处	进行处理,各类有机废气均采用了适宜高效的治污设施。	
	理,具备条件的可采用回收式热力燃烧装置。	是17人生,自人自身的人,19人们,是正同人们的117人的11	
4. 《挥》	发性有机物无组织排放控制标准》(GB37822-2019)		
	 VOCs 质量占比大于等于 10%的含 VOCs 产品,其使用过程应采用密闭	项目油性漆喷涂及烘干配套"水帘柜+二级水喷淋+干式过滤器+沸	
4.1	设备或在密闭空间内操作,废气应排至 VOCs 废气处理收集系统;无法	石转轮吸附/脱附+CO"进行处理; UV 喷涂线配套"过滤棉+水喷淋+	符合
	密闭的,应采取局部收集措施,废气应排至 VOCs 废气收集处理系统。	干式过滤器+活性炭吸附"进行处理,胶水废气配套"活性炭吸附"	14 H
		进行处理;各类有机废气均采用了适宜高效的治污设施。	
	VOCs 废气收集处理系统应与生产工艺设备同步运行。VOCs 废气收集处		
4.2	理系统发生故障或检修时,对应的生产工艺设备应停止运行,待检修完		符合
	毕后同步投入使用。	行,待检修完毕后同步投入使用。	

序号	法律、政策要求	工程内容	符合性
5.《挥》	发性有机物(VOCs)污染防治技术政策》(环保部公告 2013 第 31 号)		
5.1	鼓励符合环境标志产品技术要求的水基型、无有机溶剂型、低有机溶剂型的涂料、油墨和胶粘剂等的生产和销售	项目所用涂料、胶粘剂均属于低 VOCs 含量原料。	符合
5.2	鼓励采用密闭一体化生产技术,并对生产过程中产生的废气分类收集后 处理	本项目 UV 喷涂线均为自动化密闭一体生产线,生产过程中产生的废气分类收集后处理。	符合
5.3	根据涂装工艺的不同,鼓励使用水性涂料、高固份涂料、粉末涂料、紫外光固化(UV)涂料等环保型涂料;推广采用静电喷涂、淋涂、辊涂、浸涂等效率较高的涂装工艺;应尽量避免无 VOCs 净化、回收措施的露天喷涂作业	项目使用的 UV 涂料、调配后的油性漆均属于低 VOCs 含量原辅材料;根据相似相溶原理,喷枪清洗时,油性涂料只能溶于有机溶剂中,低挥发性的清洗剂不能达到清洗目的,故项目油性漆喷枪喷嘴清洗用清洗剂暂时无法替代。喷涂废气均收集处理后排放,不存在无 VOCs 净化、回收措施的露天喷涂作业。	符合
5.4	含 VOCs 产品的使用过程中,应采取废气收集措施,提高废气收集效率,减少废气的无组织排放与逸散,并对收集后的废气进行回收或处理后达标排放	项目以"应收尽收、分质收集"为原则,拼板废气、调漆、喷底漆及烘干废气单层密闭负压收集,喷面漆废气单层密闭正压收集,UV喷涂线废气设备废气排口直连,喷胶废气经集气罩收集;各类有机废气均采用了适宜高效的治污设施。	符合
5.5	对于含高浓度 VOCs 的废气,宜优先采用冷凝回收、吸附回收技术进行回收利用,并辅助以其他治理技术实现达标排放。对于含中等浓度 VOCs 的废气,可采用吸附技术回收有机溶剂,或采用催化燃烧和热力焚烧技术进行净化时,应进术净化后达标排放。当采用催化燃烧和热力焚烧技术进行净化时,应进行余热回收利用。对于含低浓度 VOCs 的废气,有回收价值时可采用吸附技术、吸收技术对有机溶剂回收后达标排放;不宜回收时,可采用吸附浓缩燃烧技术、生物技术、吸收技术、等离子体技术或紫外光高级氧化技术等净化后达标排放。	; 项目油性漆喷涂及烘干配套"水帘柜+二级水喷淋+干式过滤器+沸石转轮吸附/脱附+CO"进行处理; UV 喷涂线配套"过滤棉+水喷淋+干式过滤器+活性炭吸附"进行处理; 胶水废气配套"活性炭吸附"进行处理; 各类有机废气均采用了适宜高效的治污设施。	符合
6.关于	印发《广东省臭氧污染防治(氮氧化物和挥发性有机物协同减排)实施	方案(2023-2025 年)》的通知(粤环函〔2023〕45 号)	
6.1	印刷、家具、制鞋、汽车制造和集装箱制造业。鼓励印刷、家具、制鞋、汽车制造和集装箱制造企业对照行业标杆水平,采用适宜高效的治污设施,开展涉 VOCs 工业企业深度治理,印刷企业宜采用"减风增浓+燃烧"、"吸附+燃烧"、"吸附+冷凝回收"、吸附等治理技术;家具制造企业宜采用漆雾预处理+吸附浓缩+燃烧(蓄热燃烧、催化燃烧);汽车制造和集装箱制造企业推进低 VOCs 原辅材料替代。印刷等行业执行国家和省新发布或修订有关有组织与无组织排放控制要求,有相同大气污染物项目的执行较严格排放限值,污染物项目不同的同时执行国家和省相关污染	性漆均属于低 VOCs 含量原辅材料,根据相似相溶原理,喷枪清洗时,油性涂料只能溶于有机溶剂中,低挥发性的清洗剂不能达到清洗目的,故项目油性漆配套使用的清洗剂暂时无法替代。项目喷涂废气采用设备废气排口直连或单层密闭负压、单层密闭正压收集,油性漆喷涂及烘干配套"水帘柜+二级水喷淋+干式过滤器+沸石转轮吸附/脱附+CO"进行处理;UV喷涂线配套"过滤棉+水喷	符合

序号	法律、政策要求	工程内容	符合性
	物排放限值	附"进行处理;项目喷涂废气处理工艺属于污染防治先进可行技术。	
6.2	企业无组织排放控制措施及相关限值应符合《挥发性有机物无组织排放控制标准(GB37822)》、《固定污染源挥发性有机物排放综合标准(DB44/2367)》和《广东省生态环境厅关于实施厂区内挥发性有机物无组织排放监控要求的通告》(粤环发〔2021〕4 号)要求,无法实现低 VOCs 原辅材料替代的工序,宜在密闭设备、密闭空间作业或安装二次密闭设施;新、改、扩建项目限制使用光催化、光氧化、水喷淋(吸收可溶性 VOCs 除外)、低温等离子等低效 VOCs 治理设施(恶臭处理除外),组织排查光催化、光氧化、水喷淋、低温等离子及上述组合技术的低效 VOCs 治理设施,对无法稳定达标的实施更换或升级改造。	IN 控制标准(GR3/877)》。《固定污染源挥友性有利别准队综合	符合
6.3	加快推进工程机械、钢结构、船舶制造等行业低 VOCs 含量原辅材料替代,引导生产和使用企业供应和使用符合国家质量标准产品。	项目所用涂料、胶粘剂均属于低 VOCs 含量原料。	符合
7.《广	东省 2021 年水、大气、土壤污染防治工作方案》(粤办函〔2021〕58 号	1)	
7.1	实施低 VOCs 含量产品源头替代工程。严格落实国家产品 VOCs 含量限值标准要求,除现阶段确无法实施替代的工序外,禁止新建生产和使用高 VOCs 含量原辅材料项目。鼓励在生产和流通消费环节推广使用低VOCs 含量原辅材料。	项目所用涂料、胶粘剂均属于低 VOCs 含量原料。	符合
7.2	指导企业使用适宜高效的治理技术,涉 VOCs 重点行业新建、改建和扩建项目不推荐使用光氧化、光催化、低温等离子等低效治理设施,已建项目逐步淘汰光氧化、光催化、低温等离子治理设施。指导采用一次性活性炭吸附治理技术的企业,明确活性炭装载量和更换频次,记录更换时间和使用量。推行活性炭厂内脱附和专用移动车上门脱附,指导企业做好废活性炭的密封贮存和转移,引导建设活性炭集中处理中心、溶剂回收中心,推动家具、干洗、汽车配件生产等典型行业建设共性工厂。	项目油性漆喷涂及烘干配套"水帘柜+二级水喷淋+干式过滤器+沸石转轮吸附/脱附+CO"进行处理; UV 喷涂线配套"过滤棉+水喷淋+干式过滤器+活性炭吸附"进行处理; 胶水废气配套"活性炭吸附"进行处理, 不属于低效 VOCs 治理设施。	符合
8、《 ∫	东省生态环境保护"十四五"规划》(粤环〔2021〕10 号)		
8.1	珠三角地区禁止新建、扩建水泥、平板玻璃、化学制浆、生皮制革以及 国家规划外的钢铁、原油加工等项目	项目属于家具制造业,不属于水泥、平板玻璃、化学制浆、生皮制 革以及国家规划外的钢铁、原油加工等项目。	符合
8.2	珠三角禁止新建、扩建燃煤燃油火电机组和企业燃煤燃油自备电站,推进沙角电厂等列入淘汰计划的老旧燃煤机组和企业自备电站有序退出,原则上不再新建燃煤锅炉,逐步淘汰生物质锅炉、集中供热管网覆盖区域内的分散供热锅炉	项目使用电能及天然气。	符合

世政省共使清洁能源	序号	法律、政策要求	工程内容	符合性
化工、包装印刷、工业涂装等重点行业建立完善源头、过程和末端的	8.3		项目使用电能及天然气。	符合
9.1 严格限制新建生产和使用高挥发性有机物原辅材料的项目。 加强 VOCs 源头替代和无组织排放管控。大力推进低 VOCs 含量原辅材料	8.4	化工、包装印刷、工业涂装等重点行业建立完善源头、过程和末端的 VOCs 全过程控制体系。大力推进低 VOCs 含量原辅材料源头替代,严 格落实国家和地方产品 VOCs 含量限值质量标准,禁止建设生产和使用 高 VOCs 含量的溶剂型涂料、油墨、胶粘剂等项目	项目所用涂料、胶粘剂均属于低 VOCs 含量原料。	符合
加强 VOCs 源头替代和无组织排放管控。大力推进低 VOCs 含量原辅材料的企业纳入正面清单和政府 项目严格落实原辅材料源头替代技术。严格按照《挥发性有机物无 经色采购清单。鼓励重点行业且开展生产工艺和设备水性化改造,推广 组织排放控制标准》要求,开展厂区无组织排放浓度监测。加强对 含 VOCs 物料储存、转移和运输、设备与管线组件泄漏、敞开页面 逸散以及工艺过程等五类排放源的管控。				65 A
料替代,将全面使用低 VOCs 含量原辅材料的企业纳入正面清单和政府每色采购清单。鼓励重点行业且开展生产工艺和设备水性化改造,推广组织排放控制标准》要求,开展厂区无组织排放浓度监测。加强对含 VOCs 物料储存、转移和运输、设备与管线组件泄漏、敞开页面逸散以及工艺过程等五类排放源的管控。 9.2 使用水性、高固体分、无溶剂,粉末等低 VOCs 含量涂料。严格落实《挥发性有机物无组织排放控制标准》,开展厂区无组织排放浓度监测。加强对含 VOCs 物料储存、转移和运输、设备与管线组件泄漏、敞开页面逸散以及工艺过程等五类排放源的管控。 9.3 实施 VOCs 分级和清单化管控。推进 VOCs 高排放企业治理设施提升改造,淘汰光催化、光氧化、低温等离子等现有低效治理设施。 10.《佛山市顺德区人民政府办公室关于印发<佛山市顺德区生态环境保护"十四五"规划(2021-2025)》的通知》(顺府办发(2022)16 号)加强 VOCs 源头替代和无组织排放管管。大力推进低 VOCs 含量、低反应活性的原辅材料替代,将全面使用低 VOCs 含量原辅材料的企业纳入正面清单和政府绿色采购清单。鼓励重点行业企业开展生产工艺和设备水性化改造,推广使用水性、高固体分、无溶剂、粉末等低 VOCs 含 然性化改造,推广使用水性、高固体分、无溶剂、粉末等低 VOCs 含组织排放空制标准》,开展厂区大组织排放浓度监测,加强对各水性化改造,推广使用水性、高固体分、无溶剂、粉末等低 VOCs 含组织排放空制标准》,开展厂区无组织排放浓度监测,加强对各级程度监测,加强对合 VOCs 物料储存、转移和运输、设备与管线组件泄漏、敞开页面逸散以及工艺过程等五类排放源的管控。 这VOCs 物料储存、转移和运输、设备与管线组件泄漏、敞开页面逸散以及工艺过程等五类排放源的管控。 该以及工艺过程等五类排放源的管控。 该以及工艺过程等五类排放源的管控。			坝目所用涂料、胶粘剂均属于低 VOCs 含量原料。	符合
9.3 实施 VOCs 分级和清单化管控。推进 VOCs 高排放企业治理设施提升改造,淘汰光催化、光氧化、低温等离子等现有低效治理设施。 10.《佛山市顺德区人民政府办公室关于印发<佛山市顺德区生态环境保护"十四五"规划(2021-2025)>的通知》(顺府办发(2022)16 号) 加强 VOCs 源头替代和无组织排放管控。大力推进低 VOCs 含量、低反应活性的原辅材料替代,将全面使用低 VOCs 含量原辅材料的企业纳入正面清单和政府绿色采购清单。鼓励重点行业企业开展生产工艺和设备水性化改造,推广使用水性、高固体分、无溶剂、粉末等低 VOCs 含量涂料。严格落实《挥发性有机物无组织排放控制标准》,开展厂区内无组织排放浓度监测,加强对含 VOCs 物料储存、转移和运输、设备与管线组件泄漏、敞开页面逸散以及工艺过程等五类排放源的管控。加强储油库、加油站等 VOCs 排放治理,推动油品储运销体系安装油气回收	9.2	料替代,将全面使用低 VOCs 含量原辅材料的企业纳入正面清单和政府 绿色采购清单。鼓励重点行业且开展生产工艺和设备水性化改造,推广 使用水性、高固体分、无溶剂、粉末等低 VOCs 含量涂料。严格落实《挥 发性有机物无组织排放控制标准》,开展厂区无组织排放浓度监测。加 强对含 VOCs 物料储存、转移和运输、设备与管线组件泄漏、敞开页面	组织排放控制标准》要求,开展厂区无组织排放浓度监测。加强对含 VOCs 物料储存、转移和运输、设备与管线组件泄漏、敞开页面	·
加强 VOCs 源头替代和无组织排放管控。大力推进低 VOCs 含量、低反应活性的原辅材料替代,将全面使用低 VOCs 含量原辅材料的企业纳入正面清单和政府绿色采购清单。鼓励重点行业企业开展生产工艺和设备水性化改造,推广使用水性、高固体分、无溶剂、粉末等低 VOCs 含组织排放控制标准》要求,开展厂区无组织排放浓度监测。加强对量涂料。严格落实《挥发性有机物无组织排放控制标准》,开展厂区内无组织排放浓度监测,加强对含 VOCs 物料储存、转移和运输、设备与管线组件泄漏、敞开页面管线组件泄漏、敞开页面逸散以及工艺过程等五类排放源的管控。加强储油库、加油站等 VOCs 排放治理,推动油品储运销体系安装油气回收	u 4		石转轮吸附/脱附+CO"进行处理; UV 喷涂线配套"过滤棉+水喷淋+ 干式过滤器+活性炭吸附"进行处理; 胶水废气配套"活性炭吸附"	
反应活性的原辅材料替代,将全面使用低 VOCs 含量原辅材料的企业纳入正面清单和政府绿色采购清单。鼓励重点行业企业开展生产工艺和设备水性化改造,推广使用水性、高固体分、无溶剂、粉末等低 VOCs 含量涂料。严格落实《挥发性有机物无组织排放控制标准》,开展厂区内无组织排放控制标准》,开展厂区内无组织排放浓度监测,加强对含 VOCs 物料储存、转移和运输、设备与管线组件泄漏、敞开页面造散以及工艺过程等五类排放源的管控。加强储油库、加油站等 VOCs 排放治理,推动油品储运销体系安装油气回收	10.《佛	山市顺德区人民政府办公室关于印发<佛山市顺德区生态环境保护"十四	五"规划(2021-2025)>的通知》(顺府办发〔2022〕16号)	
目动监控系统。	10.1	反应活性的原辅材料替代,将全面使用低 VOCs 含量原辅材料的企业纳入正面清单和政府绿色采购清单。鼓励重点行业企业开展生产工艺和设备水性化改造,推广使用水性、高固体分、无溶剂、粉末等低 VOCs 含量涂料。严格落实《挥发性有机物无组织排放控制标准》,开展厂区内无组织排放浓度监测,加强对含 VOCs 物料储存、转移和运输、设备与管线组件泄漏、敞开页面逸散以及工艺过程等五类排放源的管控。加强储油库、加油站等 VOCs 排放治理,推动油品储运销体系安装油气回收自动监控系统。	项目严格落实原辅材料源头替代技术。严格按照《挥发性有机物无组织排放控制标准》要求,开展厂区无组织排放浓度监测。加强对含 VOCs 物料储存、转移和运输、设备与管线组件泄漏、敞开页面逸散以及工艺过程等五类排放源的管控。	·

序号	法律、政策要求	工程内容	符合性
11.1	各地生态环境部门要健全建设项目 VOCs 排放总量管理台账,严格核定 VOCs 可替代总量指标,重点核查用作替代的削减量是否为企业达标排放后采取治理措施的削减量、或淘汰关停后的削减量,是否有削减量重复使用等情况,进一步规范 VOCs 削减替代工作。新改扩建项目环评审批时,应逐级出具 VOCs 总量替代来源审核意见,确保总量指标管理扎实有效	项目审批时由生态环境部门核定 VOCs 总量来源。	符合
12.关于	印发《广东省涉挥发性有机物(VOCs)重点行业治理指引》的通知(
12.1	溶剂型涂料-木器涂料-聚氨酯类: 面漆[光泽(60°)≥80 单位值] VOCs 含量≤550g/L; 面漆[光泽(60°)<80 单位值] VOCs 含量≤650g/L; 底漆 VOCs 含量≤600g/L;	403g/L,低于标准≤550g/L;底漆 VOCs 含量为 361g/L,低于标准≤600g/L。	符合
12.2	控	为 75.16g/L,均符合标准。	付合
12.3	胶粘剂:本体型 MS 类、聚氨酯类、聚硫类、环氧树脂类、热塑类、其他 VOCs 含量≤100g/L。	项目使用的水性胶水 VOCs 含量为 0.05tVOCs/t 胶粘剂,白乳胶 VOCs 含量为 28g/L,均符合标准。	符合
12.4	涂料、粘胶剂、固化剂、稀释剂、清洗剂等含 VOCs 原辅材料应集中储存于密闭的容器、包装袋、储罐、储库、料仓中。 盛装 VOCs 物料的容器或包装袋放于室内,或存放于设置有雨棚、遮阳和防渗设施的专用场地。	项目涉及 VOCs 的物料均储存在密闭的包装桶, 放在仓库, 采用小	符合
12.5	涂料、粘胶剂、固化剂、稀释剂、清洗剂等液体 VOCs 物料应采用管道密闭输送。采用非管道输送方式转移液态 VOCs 物料时,应采用密闭容器或罐车。		符合
12.6	程 VOCs 物料在非取用状态时应加盖、封口,保持密闭。使用过程中	VOCs 物料在非取用状态时加盖、封口,保持密闭。使用过程中随取随开,用后应及时密闭,以减少挥发。	符合
12.7	涂装、施胶、干燥、辐射固化工序、调漆、喷枪清洗等工艺过程中使用 VOCs 质量占比大于等于 10%物料或有机聚合物的工艺过程应采用密闭设备(含往复式喷涂箱)或在密闭空间内操作,废气应排至 VOCs 废气收集处理系统;无法密闭的,应采取局部气体收集措施,废气排至 VOCs 废气收集处理系统。采用外部集气罩的,距集气罩开口面最远处的 VOCs 无组织排放位置,控制风速不低于0.3m/s,有行业要求的按相关规定执行。	按据	
12.8	废气收集系统应与生产工艺设备同步运行。废气收集系统发生故障	拼板废气、调漆、喷底漆及烘干废气单层密闭负压收集,喷面漆废	符合

序号	法律、政策要求	工程内容	符合性
	或检修时,对应的生产工艺设备应停止运行,待检修完毕后同步投	气单层密闭正压收集,UV 喷涂线废气设备废气排口直连,喷胶废	
	入使用;生产工艺设备不能停止运行或不能及时停止运行的,应设		l I
	置废气应急处理设施或采取其他代替措施。	理系统发生故障或检修时,对应的生产工艺设备停止运行,待检修	
		完毕后同步投入使用。	
12.9	推荐设置 VOCs 物料专职管理人员,根据日生产量配发涂料用量并		符合
12.7	做好记录,便于日后优化用量。	并做好记录。	10 🖂
12.10	规范涂装操作条件(如喷涂时空气流量、压力、涂装时间等),加		符合
12.10		强对生产工人的技能培训。	
12.11	喷漆房和干燥房应设立独立密封、带收集管道的车间,应注意人员		符合
12.11		压收集,收集效率均可达到80%以上。	10 🖂
	载有 VOCs 物料的设备及其管道在开停工(车)、检维修和清洗时,		
12.12	应在退料阶段将残存物料退净,并用密闭容器盛装,退料过程废气		符合
12.12	应排至 VOCs 废气收集处理系统;清洗及吹扫过程排气应排至 VOCs		13 11
	废气收集处理系统。	废气收集处理系统。	
12.13	辐射固化涂料采用辊涂、淋涂、喷涂等高效涂装工艺替代低效涂装	本项目 UV 漆喷涂线为往复式喷涂技术	符合
12.13	工艺。辊涂/淋涂技术主要适用于 UV 固化涂料。		11 11
	喷涂工序推荐使用水性涂料、辐射固化涂料(水性 UV 固化涂料和		
	无溶剂 UV 固化涂料)、粉末涂料替代技术,水性涂料应满足 GB		
	18581-2020 的要求。宜配合使用干式过滤技术。形状规则平整的木	; 本项目 UV 漆喷涂线使用往复式喷涂技术; 项目所用涂料、胶粘剂	
12.14	质家具使用 UV 涂料时选择辊涂工艺,水性涂料选择喷涂工艺。形	均属于低 VOCs 含量原料,均满足《木器涂料中有害物质限量》(GB	
	状不规则的木质家具底漆喷涂可使用水性涂料,面漆使用油性涂料,	18581-2020)要求(见表 3.1-10)。	1,1,1
	推荐选择空气喷涂工艺;使用水性涂料时选择空气喷涂工艺,使用		
	粉末涂料时选择粉末喷涂工艺。采用高效往复式喷涂箱、机械手、		
	静电喷涂等涂装工艺替代低效涂装工艺。		
	1) 有机废气排气筒排放浓度不高于《家具制造行业挥发性有机化合		
	末 物排放标准》(DB 44/814-2010)排气筒 VOCs 排放第Ⅱ时段排放限		
10.15	值;车间或生产设施排气中 NMHC 初始排放速率≥3 kg/h 时,建设端 NOC 付押的禁止付押款率 2000/		
12.15	冷	用"水帘柜+旋流喷淋塔+干式过滤器+沸石转轮吸附/脱附+CO"处	符合
	理 (2) 厂界 VOCs 浓度不高于《家具制造行业挥发性有机化合物排放理 (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7		
	标准》(DB 44/814-2010)无组织排放监控点浓度限值;厂区内无		
	组织排放监控点 NMHC 的小时平均浓度值不超过 6 mg/m3,任意	物排放你准》(DB 44/814-2010) 尤组织排放监控点浓度限值; /	

序号	法律、政策要求	工程内容	符合性
	一次浓度值不超过 20 mg/m³。	区内无组织排放监控点 NMHC 的小时平均浓度值不超过 ϵ	5
		mg/m³,任意一次浓度值不超过 20 mg/m³。	
12.16	使用溶剂型涂料的大、中规模的家具制造企业或集中式喷漆工厂的漆雾、VOCs 治理适合采用热力燃烧和催化燃烧技术。典型治理技术路线:①湿式除尘+干式过滤+活性炭吸附/脱附+RCO;②湿式除尘+干式过滤+转轮吸附/脱附+RCO。	高,但难以回收,故采用沸石转轮吸附/脱附+CO 技术处理,同时	符合
12.17	使用 UV 固化涂料进行辊涂/淋涂、规则平整的板式家具的漆雾、 VOCs 废气宜采用吸附/脱附技术。典型治理技术路线:活性炭吸附, 脱附。	UV 漆喷涂线为往复式喷涂技术,配套"过滤棉+水喷淋+干式过滤器+活性炭吸附"等废气处理工艺进行废气处理	符合
12.18	涂装、喷胶/施胶废气宜采用浓缩+燃烧/催化氧化等工艺进行处理。	油性漆喷涂废气 TVOC 浓度较高,但难以回收,故采用沸石转轮吸附/脱附+CO 技术处理,同时采用水帘柜和气旋喷淋、干式过滤器作为预处理,保障 CO 有效; UV 漆喷涂产生的有机废气较少,考虑经济可行性,UV 喷涂产生的废气配套"过滤棉+水喷淋+干式过滤器+活性炭吸附"处理; 胶水废气配套"活性炭吸附"处理。	符合
12.19	管理台账:建立含 VOCs 原辅材料台账,记录含 VOCs 原辅材料的名称及其 VOCs 含量、采购量、使用量、库存量、含 VOCs 原辅材料回收方式及回收量。建立废气收集处理设施台账,记录废气处理设施进出口的监测数据(废气量、浓度、温度、含氧量等)、废气收集与处理设施关键参数、废气处理设施相关耗材(吸收剂、吸附剂、催化剂等)购买和处理记录。建立危废台账,整理危废处环置合同、转移联单及危废处理方资质佐证材料。台账保存期限不少境于3年。	运行期间项目建立含 VOCs 原辅材料台账,登记各原辅材料的名称、购买量、使用量和库存量,建立 VOCs 产生和排放量管理台账; 严格按照环保要求完善废气处理设施管理台账,记录废气监测时 间、监测污染物浓度和设施运行参数,并记录药剂与活性炭的更换 频次和时间;建立各类危险废物建立管理台账,严格按照环保主管	符合
12.20	管 对于重点管理排污单位,涂装或施胶车间/生产线至少每半年监测一次挥发性有机物;对于简化管理排污单位,至少每年监测一次挥发性有机物。对于重点管理排污单位,涂装或施胶车间/生产线至少每半年监测一次苯、甲苯、二甲苯、甲醛(仅对喷胶/施胶车间或生产线排放口进行监测);对于简化管理排污单位,至少每年监测一次苯、甲苯、二甲苯、甲醛(仅对喷胶/施胶车间或生产线排放口进行监测)。对于重点管理排污单位,厂界无组织废气至少每半年监测一次挥发性有机物;对于简化管理排污单位,厂界无组织废气至少	排放口。故喷涂废气(TVOC、NMHC)监测频次为 1 次/年,颗粒物、二甲苯、臭气浓度监测频次为 1 次/年,木工开料、木加工、打磨废气颗粒物监测频次为 1 次/年,天然气燃烧废气颗粒物、SO ₂ 、NO _x 、烟气黑度监测频次为 1 次/年。项目厂界挥发性有机物(TVOC、非甲烷总烃)每半年监测一次,涂装工段旁挥发性有机物(TVOC、	符合

序号	法律、政策要求	工程内容	符合性
	每年监测一次挥发性有机物。	执行。	
12.21	危废管理:工艺过程产生的含 VOCs 废料(渣、液)应按照相关要求进行储存、转移和输送。盛装过 VOCs 物料的废包装容器应加盖密闭。	加且生产的提产生令 VOCCBU发制的的专在多团相风部 佐移时程	符合
12.22	建设项目 VOCs 总量管理:新、改、扩建项目应执行总量替代制度,明确 VOCs 总量指标来源。新、改、扩建项目和现有企业 VOCs 基准排放量计算参考《广东省重点行业挥发性有机物排放量计算方法核算》进行核算,若国家和我省出台适用于该行业的 VOCs 排放量计算方法,则参照其相关规定执行。	物和氮氧化物减排量核算方法的通知(粤环函〔2023〕538 号)》 进行核算,按照物料衡算、产污系数法和实测法进行统计。	符合
13.佛山	市生态环境局关于印发《佛山市挥发性有机物排污总量指标精细化管理	工作方案(试行)》的函(佛环函(2023)29 号)	
13.1	减排核算。现有企业减排储备核算遵循真实、客观、统一、便捷的原则,按照实际生产情况进行核算(已批未建生产线不计减排),暂不与企业环境统计、环评审批、排污许可载明的总量指标挂钩。减排储备核算总量按照改造提升前后的排放指标量差值计算,即改造前后的涉 VOCs 生产线数量规模、单条生产线挥发性原辅材料使用数量系数、对应类别原辅材料原辅材料挥发性质量比(取国家标准的高值)、对应工艺设施收集及处理综合排放率的乘积差(即们-综合去除率%)。	本项目属于家具制造业,涉及喷漆喷涂,项目审批时由生态环境部 门核定 VOCs 总量来源。	符合
14.《佛	山市生态环境保护委员会办公室关于印发<佛山市强化大气污染防治行动	动方案(2023年)>的通知》(佛环委办(2023)4号)	
14.1	一要规范审批。原则上不再审批经济贡献少、生产设备落后、生产方式粗放(如敞开点多,难以收集)且使用高挥发性原辅材料的 VOCs"4+2"项目,新增环评审批使用高挥发性原辅材料的 VOCs"4+2"企业,需参照属地新建项目经济指标要求,按照《佛山市生态环境局关于印发涉 VOCs重点行业建设项目环评文件编制技术参考指南的通知》(2022-0174(环评))要求,选用高效治理技术或我市同行业先进治理技术	项目建设具有良好的经济效益,生产设备先进,各类废气均可以做到有效收集,按照《佛山市生态环境局关于印发涉 VOCs 重点行业建设项目环评文件编制技术参考指南的通知》(2022-0174(环评))	l I
14.2	2023年,全面完成省任务、市 VOCs"4+2"清单企业的光氧化、光催化、低温等离子等低效治理设施淘汰。继续推进重点 VOCS 企业评级,强化B级、C级企业管控督察指导相关企业对照国家和省治理指引编制 VOCs深度治理手册开展治理,2021年重点企业清单中 C级企业应于 2023年底前改造升级为B或A级。推进 VOCS重点企业安装过程监控,不断完善企业换水换炭的管理机制,督促企业按时足量换水换炭,规范治理设施运行。	项目油性漆喷涂及烘干配套"水帘柜+二级水喷淋+干式过滤器+沸石转轮吸附/脱附+CO"进行处理; UV 喷涂线配套"过滤棉+水喷淋+干式过滤器+活性炭吸附"进行处理; 胶水废气配套"活性炭吸附"进行处理; 不涉及光氧化、光催化、低温等离子等低效治理设施。水帘柜废水、有机废气喷淋废水更换频次严格按照设计方案和实际处理情况进行操作,并按规定记录更换时间和使用量。	符合

序号	法律、政策要求	工程内容	符合性
15、《	佛山市生态环境局关于印发<佛山市 2023 年重点行业挥发性有机物综合	整治工作方案>的函》(佛环函(2023)48 号)相符性分析	
	深化末端治理。淘汰低效治理设施,不再新建低效治理设施。企业依据废气特征、VOCs 组分及浓度、生产工况等合理选择高效治理技术.	油性漆喷涂废气 TVOC 浓度较高,但难以回收,故采用沸石转轮吸附/脱附+CO 技术处理,同时采用水帘柜和气旋喷淋、干式过滤器作为预处理,保障 CO 有效; UV 漆喷涂产生的有机废气较少,考虑经济可行性,UV 喷涂产生的废气配套"过滤棉+水喷淋+干式过滤器+活性炭吸附"处理; 胶水废气配套"活性炭吸附"处理。	符合
16、《/	一东省人民政府关于印发广东省空气质量持续改善行动方案的通知》(粤府〔2024〕85 号)相符性分析	
16.1	加大绿色环保企业政策支持力度,在低(无)VOCs 含量原辅材料生产和使用、先进工业涂装技术和设备研发制造、VOCs 污染治理、超低排放、环境监测等领域支持培育一批龙头企业。政府带头开展绿色采购,使用低(无)VOCs 含量产品。多措并举治理环保领域低价低质中标乱象,营造公平竞争环境,推动产业健康有序发展。	机化合物限量》(GB33372-2020)的相关要求,项目使用的稀释剂(擦拭用)密度为 0.852g/cm 3 挥发性为 852g/L,异丙醇清洗剂	符合
	重点区域新、改、扩建熔化炉、加热炉、热处理炉、干燥炉采用清洁能		
	源,原则上不使用煤炭、生物质等燃料。推动全省玻璃、铝压延、钢压 延行业清洁能源替代。逐步淘汰固定床间歇式煤气发生炉。	项目使用电能及天然气。	符合
16.3	全面推广使用低(无)VOCs 含量原辅材料,实施源头替代工程,加大工业涂装、包装印刷和电子行业低(无)VOCs 含量原辅材料替代力度,加大室外构筑物防护和城市道路交通标志低(无)VOCs 含量涂料推广使用力度	本项目使用的油性底漆、油性面漆、UV 底漆、UV 面漆等按相应比例调配后,最终在施工状态下 VOCs 含量满足《低挥发性有机化合物含量涂料产品技术要求》(GB/T 38597-2020)的相关要求,水性胶水和白乳胶无需调配即可使用,能够满足《胶粘剂挥发性有机化合物限量》(GB33372-2020)的相关要求;项目使用的稀释剂(擦拭用)密度为 0.852g/cm³,挥发性为 852g/L,异丙醇清洗剂溶液密度为 0.7855g/cm³,挥发性为 785.5g/L,低于《清洗剂挥发性有机化合物含量限值》(GB 38508-2020)中表 1 有机溶剂清洗剂 VOC 含量≤900g/L 的限值要求,目前油性漆和 UV 漆喷枪一般使用有机溶剂进行擦拭、清理,暂无低 VOC 清洗剂替代,具有不可替代性。	符合

图 1.4-4 产业集聚区和主题园区划定图

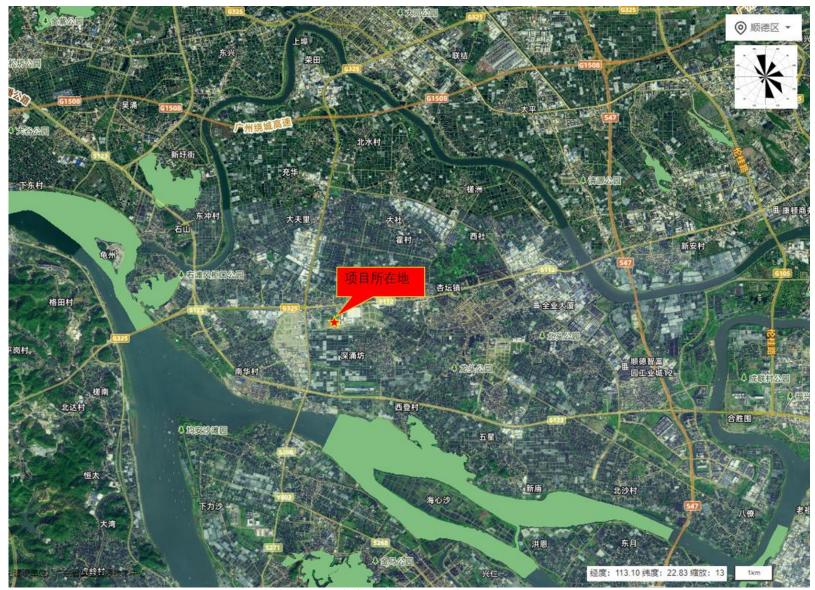


图 1.4-5 广东省生态保护红线图 (局部)

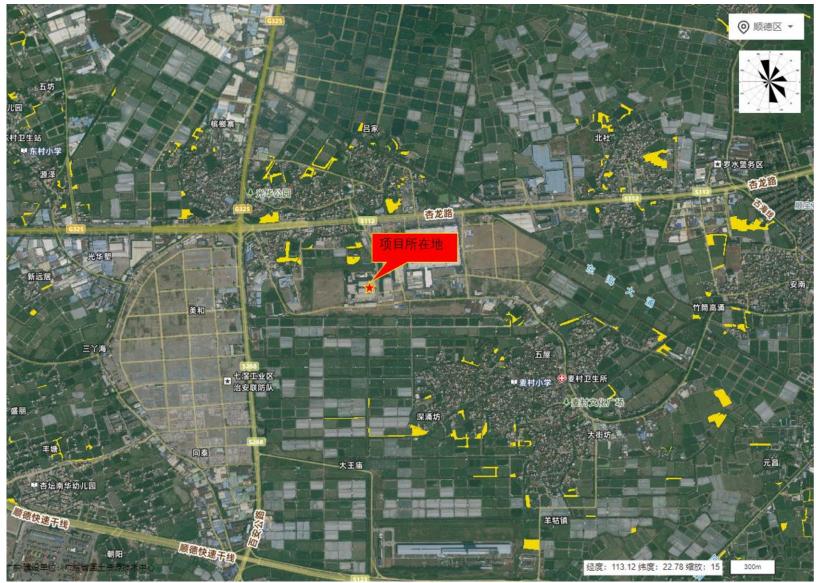


图 1.4-6 广东省永久基本农田保护图斑 (局部)

图 1.4-7 广东省城镇开发边界图 (局部)

2 总则

2.1 编制依据

2.1.1 国家相关法律法规

- 1. 《中华人民共和国环境保护法》(2014.4.24 修订, 自 2015.1.1 施行);
- 2. 《中华人民共和国环境影响评价法》(2018.12.29 修正, 2018.12.29 施行);
- 3. 《中华人民共和国大气污染防治法》(2018.10.26 修正, 2018.10.26 施行);
- 4. 《中华人民共和国水污染防治法》(2017.6.27 修正,2017.6.27 施行);
- 5. 《中华人民共和国噪声污染防治法》(2021.12.24 发布, 2022.6.5 施行);
- 6. 《中华人民共和国固体废物环境污染防治法》(2020.4.29 修订, 2020.9.1 施行)
- 7. 《中华人民共和国土壤污染防治法》(2018.08.31 颁布, 2019.1.1 施行);
- 8. 《中华人民共和国水法》(2016.7.2 修订, 2016.9.1 施行);
- 9. 《建设项目环境保护管理条例》(2017年6月21日修订通过,中华人民共和国国务院令第682号,自2017年10月1日起实施);
- 10.《建设项目环境影响评价分类管理名录(2021 年版)》(生态环境部令 第 16 号, 2021.1.1 起施行);
- 11.《产业结构调整指导目录(2024年本)》(2024年2月1日起施行);
- 12.《国务院关于印发"十四五"节能减排综合工作方案的通知》(国发〔2021〕33 号):
- 13.《关于进一步加强环境影响评价管理防范环境风险的通知》(环境保护部,环发〔2012〕77号,2012年7月3日);
- 14.《关于切实加强风险防范严格环境影响评价管理的通知》(环境保护部,环发〔2012〕98号,2012年8月8日);
- 15. 《挥发性有机物(VOCs)污染防治技术政策》(环保部 公告 2013 年 第 31 号);
- 16.《国务院关于印发大气污染防治行动计划的通知》(国发〔2013〕37 号文,2013 年9月10日);
- 17.《关于印发<重点行业挥发性有机物综合治理方案>的通知》(环大气〔2019〕 53号):
- 18.《市场准入负面清单(2025年版)》:

- 19.《关于发布<排放源统计调查产排污核算方法和系数手册>的公告》(生态环境部 公告 2021 年 第 24 号);
- 20.《关于加强高耗能、高排放建设项目生态环境源头防控的指导意见》(环环评〔2021〕45号);
- 21.《环境影响评价公众参与办法》(部令第4号,2019.1.1实施)。

2.1.2 地方相关法律法规

- 1. 《广东省环境保护条例》(根据 2022 年 11 月 30 日广东省第十三届人民代表大 会常务委员会第四十七次会议《关于修改〈广东省机动车排气污染防治条例〉 等六项地方性法规的决定》第三次修正);
- 2. 《广东省生态环境厅关于做好重点行业建设项目挥发性有机物总量指标管理工作的通知》(粤环发〔2019〕2号);
- 3. 《广东省水污染防治条例》(2020年11月27日广东省第十三届人民代表大会常务委员会第二十六次会议通过,2021年9月29日修正);
- 4. 《广东省生态环境厅关于印发《广东省生态环境保护"十四五"规划》的通知》 (粤环〔2021〕10号);
- 5. 《佛山市生态环境局关于印发<佛山市生态环境保护"十四五"规划>的通知》 (佛环〔2022〕3号):
- 6. 《佛山市顺德区人民政府办公室关于印发<佛山市顺德区生态环境保护"十四 五"规划(2021-2025)>的通知》(顺府办发(2022)16号):
- 7. 《广东省固体废物污染环境防治条例》(广东省第十三届人民代表大会常务委员会第七次会议于 2018 年 11 月 29 日修订通过, 2022 年 11 月 30 日修正);
- 8. 《广东省人民政府关于印发广东省生态文明建设"十四五"规划的通知》(粤府〔2021〕61号);
- 9. 《关于印发<广东省地表水环境功能区划>的通知》(广东省环境保护厅,粤环〔2011〕14号,2011年2月14日);
- 10.《关于同意实施广东省地表水环境功能区划的批复》(广东省人民政府,粤府函〔2011〕29号);
- 11.《关于印发广东省地下水功能区划的通知》(粤水资源〔2009〕19号,2009年9月11日);

- 12. 《广东省"两高"项目管理目录(2022年版)》;
- 13. 《广东省发展改革委关于印发<广东省坚决遏制"两高"项目盲目发展的实施方案>的通知》(粤发改能源〔2021〕368号);
- 14. 《广东省生态环境厅关于实施厂区内挥发性有机物无组织排放监控要求的通告》(粤环发〔2021〕4号):
- 15. 《印发<佛山市环境空气质量功能区划>的通知》(佛府〔2007〕154号);
- 16. 《佛山市生态环境局关于印发<佛山市声环境功能区划>的通知》(佛环〔2024〕 1号);
- 17. 《广东省大气污染防治条例》(广东省第十三届人民代表大会常务委员会公告 (第 20 号),自 2022 年 11 月 30 日起施行);
- 18. 《广东省人民政府关于印发广东省"三线一单"生态环境分区管控方案的通知》 (粤府〔2020〕71号);
- 19. 《佛山市生态环境局关于印发<佛山市"三线一单"生态环境分区管控方案(2024 年版)>的通知》(佛环(2024)20号);
- 20. 《佛山市顺德区人民政府关于印发佛山市顺德区"三线一单"生态环境分区管控 方案的通知》(顺府发〔2021〕11 号);
- 21.《广东省臭氧污染防治(氮氧化物和挥发性有机物协同减排)实施方案(2023-2025年)》(粤环函〔2023〕45号);
- 22.《广东省人民政府关于印发广东省空气质量持续改善行动方案的通知》(粤府〔2024〕85号);
- 23. 《佛山市生态环境局关于印发<佛山市挥发性有机物排污总量指标精细化管理工作方案(试行)>的函》(佛环函〔2023〕29号);
- 24. 《佛山市水生态环境保护"十四五"规划》:
- 25.《关于印发工业源挥发性有机物和氮氧化物减排量核算方法的通知》(粤环函〔2023〕538号);
- 26. 《杏坛镇人民政府关于将杏坛镇德彦大道东西片区纳入杏坛镇家具生产优先发展区的函》(杏府函〔2022〕88号)。

2.1.3 导则及技术性文件

1. 《建设项目环境影响评价技术导则 总纲》(HJ 2.1-2016);

- 2. 《环境影响评价技术导则 大气环境》(HJ 2.2-2018);
- 3. 《环境影响评价技术导则 地表水环境》(HJ 2.3-2018);
- 4. 《环境影响评价技术导则 生态影响》(HJ 19-2022);
- 5. 《环境影响评价技术导则 声环境》(HJ 2.4-2021);
- 6. 《环境影响评价技术导则 地下水环境》(HJ 610-2016);
- 7. 《建设项目环境风险评价技术导则》(HJ 169-2018);
- 8. 《环境影响评价技术导则 土壤环境(试行)》(HJ 964-2018):
- 9. 《关于发布<建设项目危险废物环境影响评价指南>的公告》(环境保护部公告 2017 年第 43 号, 2017 年 9 月 1 日);
- 10. 《危险化学品目录》(2022 年调整版):
- 11. 《国家危险废物名录》(2025 年版):
- 12. 《固体废物鉴别标准 通则》(GB 34330-2017);
- 13. 《危险废物贮存污染控制标准》(GB 18597-2023);
- 14. 《危险废物识别标志设置技术规范》(HJ 1276-2022);
- 15. 《消防给水及消火栓系统技术规范》(GB 50974-2014);
- 16. 《污染源源强核算技术指南 准则》(HJ 884-2018);
- 17. 《低挥发性有机化合物含量涂料产品技术要求》(GB/T 38597-2020);
- 18. 《袋式除尘工程通用技术规范》(HJ 2020-2012);
- 19. 《家具制造工业污染防治可行技术指南》(HJ 1180-2021):
- 20.《关于印发工业源挥发性有机物和氮氧化物减排量核算方法的通知》(粤环函〔2023〕538号);
- 21. 《排污单位自行监测技术指南 涂装》(HJ 1086-2020);
- 22. 《排污许可证申请与核发技术规范 家具制造工业》(HJ 1027-2019):
- 23. 《广东省家具制造行业挥发性有机废气治理技术指南》(2014.12.22 发布, 2015.01.01 实施);
- 24. 《胶黏剂挥发性有机化合物限量》(GB33372-2020);
- 25. 《佛山市家具制造业涉工业涂装建设项目环评文件编制技术参考指南(试行)》 (2022年8月);
- 26. 《佛山市生态环境局关于加强活性炭吸附工艺规范化设计建设与运行管理的通知》(佛环函〔2024〕70号);

- 27. 《环境保护综合名录》(2021年版);
- 28. 《木器涂料中有害物质限量》(GB 18581-2020);
- 29. 《用水定额 第3部分: 生活》(DB44/T1461.3-2021);
- 30. 《催化燃烧法工业有机废气治理工程技术规范》(HJ2027-2013);
- 31. 《清洗剂挥发性有机化合物含量限值》(GB 38508-2020);
- 32. 《固体废物分类与代码目录》(生态环境部公告 2024 第 4 号);
- 33. 《排污许可证申请与核发技术规范 工业噪声》(HJ1301-2023);
- 34. 《排放源统计调查产排污核算方法和系数手册》(公告 2021 年第 24 号);
- 35. 《排污单位污染物排放口监测点位设置技术规范》(HJ 1405-2024)。

2.1.4 其他相关依据

- 1. 建设单位提供的本项目内生产设备清单、原辅材料清单、厂房平面布置图以及其他相关资料;
- 2. 广东阅生活家居科技有限公司委托本单位编制本项目环境影响评价报告书的《合同》。

2.2 评价目的与评价原则

2.2.1 评价目的

- 1、通过对国家和省市的产业政策、城市及环境规划的了解和分析,论证本项目在 原址建设的可行性和合理性;
- 2、通过对该建设项目的工程内容和工艺流程进行分析,明确污染源和可能产生的污染因素,计算污染物的排放量,掌握本项目对环境产生的不利影响;对建设项目所在地的自然环境和环境质量现状调查,确定环境评价的主要保护目标和评价重点;
- 3、通过环境质量现状监测分析,查清建设项目所在地的环境质量现状,得出相应的结论;对建设项目施工期、营运期可能造成的环境影响进行评价,确定建设项目投产后对当地环境可能造成的不良影响的范围和程度,从而提出避免污染、减少污染的对策措施;
- 4、根据工程分析和影响预测评价的结果,对工程方案和环保措施进行可行性论证, 为环境保护主管部门的决策提供技术依据;

- 5、核实污染物排放总量,同时提出环境管理和环境监测制度建议;
- 6、从环保的角度给出项目建设的可行性结论,为环境保护主管部门的决策提供依据。

2.2.2 评价原则

评价工作应有针对性、政策性,突出重点,力求做到:

- 1、相关资料收集应全面充分,现状调查和监测类比调查应具有代表性;
- 2、工程污染源调查与项目建设影响分析力求准确;
- 3、环境影响预测与评价方法可行、数据可信。

2.3 环境功能区划

1、环境空气功能区

本项目建设地点位于广东省佛山市顺德区杏坛镇光华村德彦大道1号之一,根据《关于调整顺德区环境空气质量功能区划的复函》(佛府办函〔2014〕494号),项目选址位于环境空气质量二类区,执行《环境空气质量标准》(GB 3095-2012 及 2018 年修改单)中的二级标准,环境空气功能区划见图 2.3-1。

2、地表水环境功能区

项目食堂废水经隔油隔渣、生活污水经三级化粪处理达标后通过市政管道排入杏坛污水处理厂,处理后排入北马河,后汇入顺德支流。

因此,本项目纳污水体为北马河、顺德支流,根据《佛山市水生态环境保护"十四五"规划》,纳污水体北马河属于V类水体;根据《关于印发〈广东省地表水环境功能区划〉的通知》(粤环〔2011〕14号),顺德支流属于III类水体;北马河水质标准执行《地表水环境质量标准》(GB3838-2002)之V类标准,顺德支流水质标准执行《地表水环境质量标准》(GB3838-2002)之III类标准,项目地表水环境功能区划见图 2.3-2。

3、地下水环境功能区

根据《关于印发广东省地下水功能区划的通知》(粤水资源〔2009〕19号〕和《关于同意广东省地下水功能区划的复函》(粤府办〔2009〕459号)中相关划定,本项目所在区域属于珠江三角洲佛山南海大沥至顺德勒流地质灾害易发区(H074406002S01),

地下水功能区保护目标水质类别为III类水体。地下水功能区划见图 2.3-4。

表 2.3-1 项目地下水功能特性表

地级行	地下水	;		所在水	地貌类	地下水	面积		
政区	一级功能区	名	称	代码		资源二 级分区	型	类型	(km²)
佛山	保护区		山南海大沥至顺 5灾害易发区	顺 H074406002S01		珠江三角 洲	一般平 原区	孔隙水	408.71
矿化度	现状水	年均总补给量	年均可开采量模 地下水功能区保护目标		地下水功能		标		
(g/L)	质类别	模数(万 m³/a.km²)	サスライス 数(万 m³/a.km²)	7K HT		水位		备	注
0.3-0.85	I~V	18.99	14.05	III		水位,沿海 水不低于海		局部 Fe 超标,个 承压水	别地段

4、声环境功能区

根据《佛山市生态环境局关于印发<佛山市声环境功能区划>的通知》(佛环〔2024〕 1号),本项目所在区域属于3类声环境功能区,详见图2.3-5。

5、土壤环境功能和质量标准

本项目所在区域属于工业用地,执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)第二类用地筛选值标准,附近范围内的农用地参考执行《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618-2018)相应筛选值。

6、生态功能区划

根据"广东省地理信息公共服务平台-自然资源专题-广东省城镇开发边界",本项目位于城镇开发区,详见图 1.4-7。

图 2.3-1 大气环境功能区划图

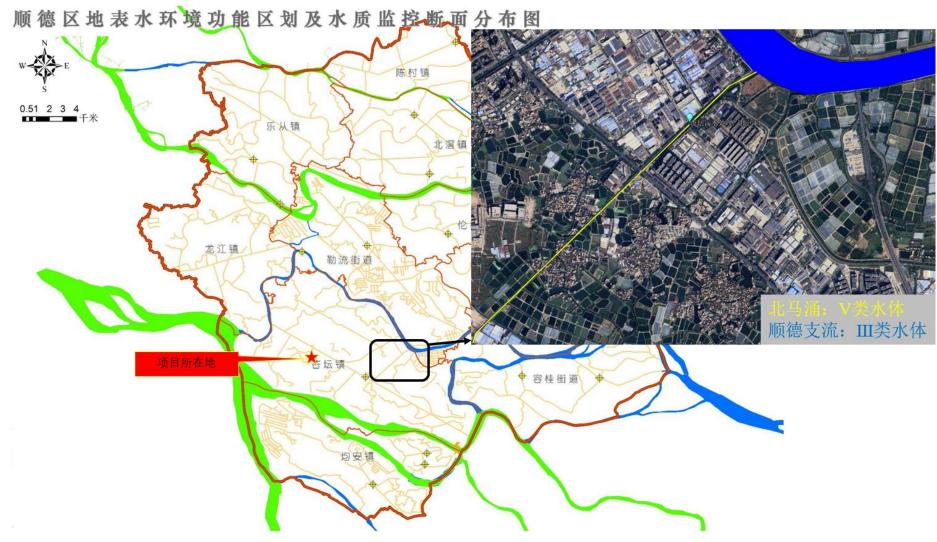


图 2.3-2 地表水环境功能区划图

第 40 页

第 41 页

佛山市顺德区声环境功能区划图

图 2.3-5 声环境功能区划图

2.4 评价因子与评价标准

2.4.1 评价因子

2.4.1.1 环境影响因素识别

本次评价环境影响识别采用列表法,其结果详见下表。

表 2.4-1 环境影响因素识别表

评价时段	时段 影响对象		影响说明	环境保护措施
		大气环境	废气	施工场地洒水、道路硬化管理、边界围档、裸
		/\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	///	露地面覆盖及易扬尘物料覆盖
		地表水	生活污水	经三级化粪池预处理后,排入市政管网
施工期	自然环境	声环境	设备噪声	选用低噪声设备,设置噪声隔离
		土壤环境	土石方	本项目无大型地下建构物,施工场地平整,施
	工过程土石方可场内平衡,?		工过程土石方可场内平衡,没有产生施工弃土	
		固废	工业固废	综合利用、合理处置
		大气环境	废气	各类废气经治理达标后排放,种植绿化、加强
		7 (P196	///	收集措施
		地表水	生活污水	生活污水、食堂废水预处理达标后排入杏坛污
			工机打力	水处理厂
营运期	自然环境	地下水	生活污水、危险废物	生活污水预处理达标后排入杏坛污水处理厂;
日色列		\(\frac{1}{2}\)		危险废物交有资质的单位处置
		声环境	设备噪声	加强管理、隔音、降噪
		土壤环境	生活污水、危险废物	场地硬底化
		固废	工业固废	综合利用、合理处置
	生态环境	陆生生态	废气被植物吸收	加强收集措施

从上表中可看出本项目对环境的主要影响因素为施工期和营运期的废水、废气、固体废物和噪声,经适当处理后对环境影响较小。

2.4.1.2 评价因子筛选

根据该项目污染特征,其主要现状评价因子及预测因子筛选如下:

(1) 地表水

现状评价因子:水温、pH 值、溶解氧、高锰酸盐指数、化学需氧量、五日生化需氧量、氨氮、总磷、总氮、铜、锌、氟化物(以 F 计)、硒、砷、汞、镉、六价铬、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物、粪大肠菌群等。

预测因子: 不进行预测, 作水环境影响定性分析。

(2) 地下水

pH、氨氮、硝酸盐、亚硝酸盐、挥发性酚类、氰化物、砷、汞、铬(六价)、总硬度(以碳酸钙计)、铅、氟、镉、铁、锰、溶解性总固体、耗氧量、硫酸盐、氯化物、总大肠菌群、细菌总数、苯、甲苯、二甲苯、LAS、K+、Na+、Ca²+、Mg²+、CO₃²、HCO₃⁻、Cl⁻、SO₄²-。

预测因子: 采用解析法进行预测, 预测因子为 COD_{Mn}。

(3) 大气

现状评价因子:基本污染物 SO_2 、 NO_2 、 PM_{10} 、 $PM_{2.5}$ 、CO、 O_3 共六项,以及其他污染物 NOx、苯、甲苯、二甲苯、TSP、TVOC、NMHC、臭气浓度。

估算因子: PM₁₀、PM_{2.5}、TSP、TVOC、NMHC、二甲苯、SO₂、NO₂、NO_x。 预测因子: PM₁₀、PM_{2.5}、TSP、TVOC、NMHC、二甲苯、SO₂、NO₂、NO_x。

(4) 噪声

噪声现状评价及预测评价因子均为等效连续声级 Leq (A)。

(5) 土壤

现状评价因子: pH、含水率、砷、镉、六价铬、铜、铅、汞、镍、四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯、硝基苯、苯胺、2-氯酚、苯并[a]蒽、苯并[b]荧蒽、苯并[b]荧蒽、苯并[k]荧蒽、菌、二苯并[a,h]蒽、茚并[1,2,3-cd] 芘、萘、石油烃(C10-C40)。

预测因子: 二甲苯。

(6) 生态环境

生态环境仅进行生态影响简单分析。

2.4.2 评价标准

2.4.2.1 环境质量标准

1、环境空气质量标准

根据《印发<佛山市环境空气质量功能区划>的通知》(佛府〔2007〕154 号〕,项目所在区域为二类环境空气质量区域, SO_2 、 NO_2 、 PM_{10} 、CO、 $PM_{2.5}$ 、 O_3 、 NO_3 和 TSP 执行《环境空气质量标准》(GB3095-2012)二级标准以及修改单(生态环境部公告 2018

年 第 29 号); TVOC、二甲苯执行《环境影响评价技术导则 大气环境》(HJ2.2-2018) 附录 D 中其他污染物空气质量浓度参考限值; 非甲烷总烃质量标准参考《大气污染物综合排放标准详解》相应环境浓度标准; 臭气浓度参考执行《恶臭污染物排放标准》(GB14554-93)厂界标准值中新扩改建项目二级标准,详见下表。

污染物名称 取值时间 浓度限值 单位 选用标准 年平均 60 二氧化硫(SO₂) 150 $\mu g/m^3$ 1小时平均 500 年平均 40 二氧化氮(NO₂) 24 小时平均 80 $\mu g/m^3$ 1 小时平均 200 年平均 70 颗粒物 (PM₁₀) $\mu g/m^3$ 24 小时平均 150 《环境空气质量标准》 年平均 35 颗粒物 (PM_{2.5}) $\mu g/m^3$ (GB3095-2012) 以及修 24 小时平均 75 改单 (生态环境部公告 日最大8小时平均 160 2018年 第29号) 臭氧(O₃) $\mu g/m^3$ 1 小时均值 200 年平均 50 24 小时平均 氮氧化物(NOx) 100 $\mu g/m^3$ 1 小时平均 250 24 小时平均 4 一氧化碳(CO) mg/m^3 1 小时平均 10 年平均 200 **TSP** $\mu g/m^3$ 300 24 小时平均 **TVOC** 600 《环境影响评价技术导 8 小时均值 $\mu g/m^3$ 则 大气环境》 (HJ2.2-2018) 附录 D 中 二甲苯 1 小时平均 200 $\mu g/m^3$ 其他污染物空气质量浓 度参考限值 《大气污染物综合排放 非甲烷总烃 1 小时平均 2.0 mg/m^3 标准详解》中非甲烷总烃 环境浓度标准 《恶臭污染物排放标准》 (GB14554-93) 厂界标 臭气浓度 20 无量纲 准值中新扩改建项目二

表 2.4-2 环境空气质量标准

2、水环境质量标准

(1) 地表水环境质量标准

项目外排生活污水经杏坛污水处理厂处理后排入北马河,后汇入顺德支流,北马河执行《地表水环境质量标准》(GB3838-2002)中的V类水质标准,顺德支流执行《地表水环境质量标准》(GB3838-2002)中的III类水质标准,详见下表。

级标准

表 2.4-3 地表水环境质量标准

序号	水质指标		I类标准	II类标准	III类标准	IV类标准	V类标准	
1	→k》目 (0C)			人为造成的玩	下境水温变化应	返限制在:		
1	水温(℃)		周平均最大温升≦1;周平均最大温降≦2					
2	pH (无量纲)				6~9			
3	溶解氧	≥	饱和率 90% (或 7.5)	6	5	3	2	
4	高锰酸盐指数	<u> </u>	2	4	6	10	15	
5	化学需氧量 (COD _{Cr})	<u> </u>	15	15	20	30	40	
6	五日生化需氧量 (BOD ₅)	<u><</u>	3	3	4	6	10	
7	氨氮 (NH ₃ -N)	<u></u>	0.15	0.5	1.0	1.5	2.0	
8	总磷 (以 P 计)	<u> </u>	0.02 (湖、库 0.01)	0.1 (湖、库 0.025)	0.2 (湖、库 0.05)	0.3 (湖、库 0.1)	0.4 (湖、库 0.2)	
9	总氮	<u> </u>	0.2	0.5	1.0	1.5	2.0	
10	铜	\leq	0.01	1.0	1.0	1.0	1.0	
11	锌	<u></u>	0.05	1.0	1.0	2.0	2.0	
12	氟化物 (以 F 计)	<u> </u>	1.0	1.0	1.0	1.5	1.5	
13	硒	<u> </u>	0.01	0.01	0.01	0.02	0.02	
14	砷	\leq	0.05	0.05	0.05	0.1	0.1	
15	汞	\leq	0.00004	0.00005	0.0001	0.001	0.001	
16	镉	\leq	0.001	0.005	0.005	0.005	0.01	
17	铬 (六价)	\leq	0.01	0.05	0.05	0.05	0.1	
18	铅	\leq	0.01	0.01	0.05	0.05	0.1	
19	氰化物	\leq	0.005	0.05	0.2	0.2	0.2	
20	挥发酚	\leq	0.002	0.002	0.005	0.01	0.1	
21	石油类	\leq	0.05	0.05	0.05	0.5	1.0	
22	阴离子表面活性剂	\leq	0.2	0.2	0.2	0.3	0.3	
23	硫化物	\leq	0.05	0.1	0.2	0.5	1.0	
24	粪大肠菌群(个/L)	\leq	200	2000	10000	20000	40000	

注: 《地表水环境质量标准》(GB3838-2002)表 1、表 2 和表 3 不涉及 SS 的标准限值。

(2) 地下水环境质量标准

根据《广东省地下水功能区划》(粤水资源(2009)19号),本项目所在区域属于珠江三角洲佛山南海大沥至顺德勒流地质灾害易发区,地下水功能区保护目标水质类别为III类水功能区,执行《地下水质量标准》(GB/T 14848-2017)III类标准,详见下表。

表 2.4-4 地下水环境质量标准

序号	项 目	III类标准	单位
1	K^+		
2	钠(Na+)	≤200	mg/L
3	Ca ²⁺		
4	Mg^{2+}		

序号	项 目	III类标准	单位
5	CO ₃ ²⁻		
6	HCO ₃ -		
7	Cl ⁻		
8	SO ₄ ²⁻		
9	pH 值	6.5~8.5	无量纲
10	氨氮 (以 N 计)	≤0.50	mg/L
11	硝酸盐(以N计)	≤20.0	mg/L
12	亚硝酸盐(以 N 计)	≤1.00	mg/L
13	挥发性酚类 (以苯酚计)	≤0.002	mg/L
14	阴离子表面活性剂	≤0.3	mg/L
15	氰化物	≤0.05	mg/L
16	砷	≤0.01	mg/L
17	汞	≤0.001	mg/L
18	铬 (六价)	≤0.05	mg/L
19	总硬度(以 CaCO₃ 计)	≤450	mg/L
20	氟化物	≤1.0	mg/L
21	铅	≤0.01	mg/L
22	镉	≤0.005	mg/L
23	铁	≤0.3	mg/L
24	锰	≤0.10	mg/L
25	溶解性总固体	≤1000	mg/L
26	硫酸盐	≤250	mg/L
27	氯化物	≤250	mg/L
28	总大肠菌群	≤3.0	MPN/100mL 或 CFU/100mL
29	细菌总数	≤100	CFU/mL
30	苯	≤10.0	μg/L
31	甲苯	≤700	μg/L
32	二甲苯	≤500	μg/L
33	耗氧量(COD _{Mn} 法,以 O ₂ 计)	≤3.0	mg/L

3、声环境质量标准

根据《佛山市生态环境局关于印发<佛山市声环境功能区划>的通知》(佛环〔2024〕 1号),本项目所在区域属声环境3类功能区,区域声环境执行《声环境质量标准》 (GB3096-2008)3类声环境功能区标准。声环境质量标准详见下表。

表 2.4-5 声环境质量标准 (单位: dB(A))

	昼间	夜间
3 类	65	55

4、土壤质量标准

本项目所在区域属于工业用地,执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)第二类用地筛选值标准;附近范围内的农用地参考执行《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618-2018)相应筛

选值,具体标准见下表。

表 2.4-6 土壤环境评价标准(单位: mg/kg)

П	ν Σιτο Σηνηνημα (Τρε. mg/ng)									
	建设用地土壤污染风险筛选值									
序号	项目	第一类用 地	第二》地		序号	项目			·类用 地	第二类用 地
1	砷	≤20	≤60)	24	1,2,	,2,3-三氯丙烷		0.05	≤0.5
2	镉	≤20	≤65	5	25		氯乙烯	≤0).12	≤0.43
3	铬 (六价)	≤3.0	≤5.′	7	26		苯	<u> </u>	≤1	≤4
4	铜	≤2000	≤180	00	27		氯苯	<	68	≤270
5	铅	≤400	≤80	0	28	1,	2-二氯苯	< <u>'</u>	560	≤560
6	汞	≤8	≤38	3	29	1,	4-二氯苯	<u> </u>	5.6	≤20
7	镍	≤150	≤90	0	30		乙苯	<u><</u>	7.2	≤28
8	四氯化碳	≤0.9	≤2.3	8	31		苯乙烯	≤1	290	≤1290
9	氯仿	≤0.3	≤0.9	9	32		甲苯	≤1	200	≤1200
10	氯甲烷	≤12	≤37	7	33	ş	7二甲苯	≤]	163	≤640
11	1,1-二氯乙烷	≤3	≤9		34	间-	-对二甲苯	≤2	222	≤570
12	1,2-二氯乙烷	≤0.52	≤5		35		硝基苯	<	34	≤76
13	1,1-二氯乙烯	≤12	≤66	6	36	苯胺				≤260
14	顺-1,2-二氯乙烯	≤66	≤59	6	37	2-氯酚		2-氯酚 ≤2		≤2256
15	反-1,2-二氯乙烯	≤10	≤54	4	38	苯并[a]蒽		É并[a]蒽 ≤5.5		≤15
16	二氯甲烷	≤94	≤61	6	39	苯并[a]芘		苯并[a]芘 ≤0.55		≤1.5
17	1,2-二氯丙烷	≤1	≤5		40	苯	苯并[b]荧蒽		5.5	≤15
18	1,1,1,2-四氯乙烷	≤2.6	≤10)	41	苯	苯并[k]荧蒽		55	≤151
19	1,1,2,2-四氯乙烷	≤1.6	≤6.8	8	42		崫		190	≤1293
20	四氯乙烯	≤11	≤53	3	43	17 	二苯并[a,h]蒽).55	≤1.5
21	1,1,1-三氯乙烷	≤701	≤84	0	44	茚并	[1,2,3-cd]芘	Υİ	5.5	≤15
22	1,1,2-三氯乙烷	≤0.6	≤2.8	8	45		萘		25	≤70
23	三氯乙烯	≤0.7	≤2.8	8	46		石油烃	≤8	326	≤4500
		<u> </u>	尺用地土	壤污	染风险	筛选值	Ī.			
序号	 污染物项目					风险!	筛选 值			
11, 4		pH≤5.	.5	5.5	5 <ph≤< td=""><td colspan="2">5<ph≤6.5 6<="" td=""><td>7.5</td><td>p</td><td>H>7.5</td></ph≤6.5></td></ph≤<>	5 <ph≤6.5 6<="" td=""><td>7.5</td><td>p</td><td>H>7.5</td></ph≤6.5>		7.5	p	H>7.5
1	镉	0.3			0.3		0.3			0.6
2	汞	1.3			1.8		2.4			3.4
3	砷	40			40		30			25
4	铅	70			90		120			170
5	铬	150			150		200			250
6	铜	50			50		100			100
7	镍	60			70		100			190
8	锌	200			200		250		300	

2.4.2.2 污染物排放标准

1、水污染物执行标准

项目餐厨废水和生活污水经预处理达到广东省地方标准《水污染物排放限值》 (DB44/26-2001)中第二时段三级标准后排入杏坛污水处理厂处理。

根据 2013 年 7 月 11 日颁布的《顺德区环境运输和城市管理局关于全区城镇污水处

理厂尾水排放执行标准的通知》规定:新、扩和改建城镇污水处理厂尾水应符合《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准及广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准的较严值。

		项目生活污水预处理执行标准	杏坛污水处理厂排水执行标准
序号	污染物	(DB44/26-2001) 第二时段三级标	(GB18918-2002) 一级 A 标准及
		准	(DB44/26-2001) 第二时段一级标准较严值
1	pН	6-9	6-9
2	COD_{Cr}	≤500	≤40
3	BOD ₅	≤300	≤10
4	SS	≤400	≤10
5	氨氮		≤5
6	LAS	≤20	≤0.5
7	TN		≤15
8	TP		≤0.5

表 2.4-7 项目生活污水执行标准

2、废气污染物排放标准

(1) 喷漆废气(G1、G7、G13)

项目手工喷涂废气主要污染物为总 VOCs、颗粒物、二甲苯和臭气(以臭气浓度表征)。厂房二油性漆喷漆废气收集并经水帘柜除漆雾,然后和烘干废气一起通过"二级水喷淋+干式过滤+沸石转轮吸附-脱附+催化燃烧"废气处理设施进行处理,处理后引至40m 排气筒 G1 排放;厂房三油性漆喷漆废气收集并经水帘柜除漆雾,然后和烘干废气一起通过2套"二级水喷淋+干式过滤"处理后一并经"沸石转轮吸附-脱附+催化燃烧"废气处理设施进行处理,处理后引至40m 排气筒 G7 排放。

UV 喷涂线主要污染物为总 VOCs、颗粒物和臭气(以臭气浓度表征)。厂房二 UV 漆喷涂废气收集并经过滤棉除漆雾,然后和烘干废气一起通过"水喷淋+干式过滤器+活性炭吸附"废气处理设施进行处理,处理后引至 40m 排气筒 G13 排放。

以上废气中总 VOCs、二甲苯有组织排放执行广东省地方标准《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)表 1 排气筒 VOCs 排放限值中II时段排放限值要求,G13 颗粒物有组织排放执行广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准,G1、G7 颗粒物执行(DB44/27-2001)中第二时段二级标准与(GB 9078-1996)表 2 "干燥炉、窑"中的二级标准的较严值,臭气浓度执行《恶臭污染物排放标准》(GB14554-93)中表 2 相应排放限值。

(2) 天然气燃烧废气(G1、G7)

催化燃烧装置使用天然气辅助供能,天然气燃烧废气经排气筒 G1、G7 排放。颗粒

物、烟气黑度执行《工业炉窑大气污染物排放标准》(GB 9078-1996)表 2 "干燥炉、窑"中的二级标准,二氧化硫、氮氧化物不设置排放限值要求。

(3) 打磨废气(G3、G5、G9、G11)

打磨房废气主要有木磨粉尘、油磨粉尘、五金抛光粉尘,木磨粉尘、油磨粉尘收集并经"水帘柜"处理后引至 40m 排气筒 G3、G5、G9、G11 排放,颗粒物有组织排放执行广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准。

(4) 木工粉尘(G2、G6、G8、G12)

木材加工过程中会产生一定量的木屑粉尘,木加工粉尘收集并经"布袋除尘器"处理后引至 40m 排气筒 G2、G6、G8、G12 排放,颗粒物有组织排放执行广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准。

(5) 胶水废气(G4、G10、G14)

项目冷压和拼板工序使用的白乳胶,贴绵过程使用水性胶水,上述胶水使用过程中会产生少量的有机废气和臭气,主要污染物为总 VOCs 和臭气(以臭气浓度表征),胶水废气收集并经"活性炭吸附"处理后引至 40m 排气筒 G4、G10、G14 排放,其中总 VOCs 有组织排放执行广东省地方标准《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)表 1 排气筒 VOCs 排放限值中II 时段排放限值要求,臭气浓度执行《恶臭污染物排放标准》(GB14554-93)中表 2 相应排放限值。

(6) 食堂油烟(G15、G16)

项目食堂产生的油烟经油烟净化器处理后,由楼顶排气筒 G15、G16 排放。企业设两个厨房,排气罩灶面总投影面积均为 7m²>6.6m²,食堂油烟执行《饮食业油烟排放标准(试行)》(GB18483-2001)中表 2 大型规模排放标准值。

(7) 无组织废气

总 VOCs、二甲苯无组织排放执行广东省地方标准《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)表 2 无组织排放监控点浓度限值要求。颗粒物无组织排放执行广东省地方标准《大气污染物排放限值》(DB44/27-2001)颗粒物第二时段无组织排放监控浓度限值;臭气浓度无组织排放执行《恶臭污染物排放标准》(GB14554-93)中表 1 中的新改扩建厂界二级排放限值。

厂区内 NMHC 执行广东省《固定污染源挥发性有机物综合排放标准》 (DB44/2367-2022)表 3 厂区内 VOCs 无组织排放限值。

(8) 大气污染物执行标准汇总

表 2.4-8 项目各大气污染物执行排放标准汇总表

排放方式	废气类 型	污染物	最高允许排放 浓度(mg/m³)	最高允许排放 速率 a(kg/h)	执行标准
		颗粒物	30	16	(DB44/27-2001)中第二时段 二级标准与(GB 9078-1996) 表 2"干燥炉、窑"中的二级 标准的较严值
		总 VOCs	30	1.45	
G1、G7 排气	喷漆废	苯 b	1	0.2	(DB44/814-2010) 表 1 排气
筒 (40m)	气、天然 气燃烧 废气	甲苯与二甲苯合 计	20	0.5	筒 VOCs 排放限值(II时段)
(ioiii)		臭气浓度		20000(无量 纲)	(GB14554-93) 中表 2 相应 排放限值
		SO_2			
		NO _x			
		烟气黑度	1(林格曼级)		(GB 9078-1996)表 2"干燥 炉、窑"中的二级标准
	UV 喷涂	颗粒物	120	16	(DB44/27-2001) 颗粒物第二 时段二级标准
G13 排气筒 (40m)	线喷漆 废气	总 VOCs	30	1.45	(DB44/814-2010)表1排气 筒 VOCs 排放限值(II时段)
	// (臭气浓度		20000(无量 纲)	(GB14554-93) 中表 2 相应 排放限值
G3、G5、G9、 G11 排气筒 (40m)	打磨废气	颗粒物	120	16	(DB44/27-2001)中第二时段 二级标准
G2、G6、G8、 G12 排气筒 (40m)	木工粉	颗粒物	120	16	(DB44/27-2001)中第二时段 二级标准
G10 排气筒	胶水废 气、危废	总 VOCs	30	1.45	(DB44/814-2010) 表 1 排气 筒 VOCs 排放限值(II时段)
(40m)	间废气	臭气浓度		20000(无量 纲)	(GB14554-93) 中表 2 相应 排放限值
G4、G14 排气 筒	股水废	总 VOCs	30	1.45	(DB44/814-2010)表1排气 筒 VOCs 排放限值(II时段)
(40m)	气	臭气浓度		20000(无量 纲)	(GB14554-93) 中表 2 相应 排放限值
G15、G16排 气筒(40m)	饭堂油 烟	油烟	2.0		(GB18483-2001) 中表 2 大型规模排放标准值; 净化设施最低去除效率 85%
		总 VOCs	2.0		
		苯 ^b	0.1		(DB44/814-2010) 表 2 无组
		甲苯 b	0.6		织排放监控点浓度限值
	厂界	二甲苯	0.2		
无组织排放	7 91	颗粒物	1.0		(DB44/27-2001)中第二时段 无组织排放监控浓度限值
		臭气浓度	20 (无量纲)		(GB14554-93) 中表1相应排 放限值
	厂区内	NMHC	6(监控点处 1h 平均浓度值)		(DB44/2367-2022)表 3 厂区 内 VOCs 无组织排放限值

排放方式	废气类 型	污染物	最高允许排放 浓度(mg/m³)	执行标准
			20(监控点处任 意一次浓度值)	

注: aG1~G14 排气筒均未高出周围 200m 半径范围的最高建筑为 5 m 以上,排放速率限值需折半执行; b 根据 MSDS,原料不含苯及二甲苯,因此报告仅列出标准限值,不进行源强核算

3、噪声排放标准

项目营运期厂界噪声排放执行《工业企业厂界环境噪声排放标准》(GB12348-2008) 3 类声环境功能区排放限值,详见下表。

表 2.4-9 环境噪声排放标准

单位: dB(A)

厂界声环境功能区类别	时段			
) 外产外境切配区关剂	昼间	夜间		
3 类	65	55		

4、固体废物

固体废物管理应遵照《中华人民共和国固体废物污染环境防治法》、《广东省固体废物污染环境防治条例》、《佛山市工业固体废物污染环境防治条例》、《国家危险废物名录》(2025 年版)、《危险废物贮存污染控制标准》(GB18597-2023)的相关规定进行处理。

2.5 评价工作等级和评价范围

2.5.1 评价工作等级

根据项目污染排放特征、所在区域环境功能区划分及污染现状,按照《环境影响评价导则》中各环境要素要求,本评价工作等级划分如下:

2.5.1.1大气环境评价等级

根据《环境影响评价技术导则 大气环境》(HJ 2.2-2018),结合工程分析结果,选择正常排放时主要大气污染物及其排放参数,采用推荐模式中的估算模式计算污染物最大落地浓度占标率(P_i),根据计算结果和环境空气评价工作分级判据对项目的大气环境评价工作进行分级。

评价工作等级	评价工作分级判据
一级	Pmax ≥10%
二级	1%≤ Pmax <10%
三级	Pmax <1%

表 2.5-1 大气环境评价工作分级判据

根据《环境影响评价技术导则 大气环境》(HJ 2.2-2018), 预测因子选取有环境空气质量标准及排放量较大的评价因子作为预测因子。

根据工程分析结果,选取喷漆废气、木工粉尘、打磨废气、胶水废气、天然气燃烧 废气作为评价指标分别计算污染物最大地面空气质量浓度占标率(P_i)。

根据《环境影响评价技术导则 大气环境》(HJ 2.2-2018)中规定: "同一项目有多个污染源(两个及以上,下同)时,则按各污染源分别确定评价等级,并取评价等级最高者作为项目的评价等级"

按照如下估算模式计算污染物最大地面浓度占标率。

$$P_i = \frac{C_i}{C_{0i}} \times 100\%$$

式中: Pi-第 i 个污染物的最大地面空气质量浓度占标率, %;

 C_i 一采用估算模型计算出的第 i 个污染物的最大 1h 地面空气质量浓度, $\mu g/m^3$;

 C_{0i} 一第 i 个污染物的环境空气质量浓度标准, $\mu g/m^3$ 。

表25-2	评价因子和评价标准表	(畄位.	$u\sigma/m^3$)
衣な4.3- 4	开71 凶 丁和 计71 彻 但 农	(平仏:	U2/III /

评价因子	平均时段	标准值	标准来源	折算为 1h 平均质量浓度限值
SO_2	1 小时平均	500		/
NO ₂	1小时平均	200		/
NOx	1小时平均	250	《环境空气质量标准》(GB	/
PM ₁₀	24 小时平均	150	3095-2012)及其修改单的二级标准	450
PM _{2.5}	24 小时平均	75		225
TSP	24 小时平均	300		900
TVOC	8 小时平均	600	《环境影响评价技术导则 大气环	1200
二甲苯	1 小时平均	200	境》(HJ 2.2-2018)附录 D	/
NMHC	1 小时平均	2000	《大气污染物综合排放标准详解》	/

备注:根据《环境影响评价技术导则 大气环境》(HJ 2.2-2018)中 5.3.2.1:对于仅有 8h 平均质量浓度限值、日平均浓度限值或年平均质量浓度限值的,可分别按 2 倍、3 倍、6 倍折算为 1h 平均质量浓度限值。

1、地形高程图

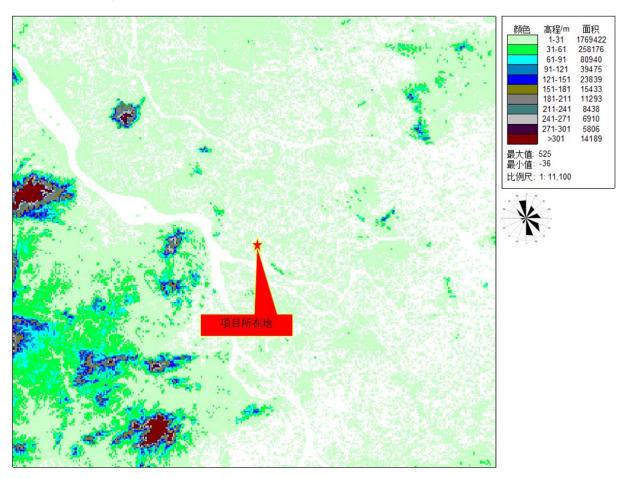


图 2.5-1 地形高程图 (50×50km)

2、估算模型参数

表 2.5-3 估算模型参数表

	参数	取值		
	城市/农村	城市		
城市/农村选项	人口数(城市选项时)	24万(杏坛镇,来源于杏坛政务服务网)		
]	最高环境温度/℃	39.2		
]	最低环境温度/℃	2.8		
	土地利用类型	城市		
	区域湿度条件	潮湿气候		
是否考虑地形	考虑地形	是		
是日 号心地//	地形数据分辨率/m	90		
	考虑岸线熏烟	不考虑		
是否考虑岸线熏烟	岸线距离/m	/		
	岸线方向/。	/		

以项目中心位置为原点(0,0)(北纬22.783161°,东经113.118682°),以正东方向为X轴正方向,正北方为Y轴正方向,建立本次大气预测坐标系统。各污染物排放源强和排放参数如表2.5-4和表2.5-5示。

表 2.5-4 正常工况情况下各污染源的预测源强一览表(点源)

类	点源		底部中 标/m	排气筒底部海拔高		排气	烟气温	烟气排气量	烟气流速	污染物排放速率(k 流速				東率(kg/l	g/h)		
型	名称	X	Y	度/m	度/m	径/m	度[℃]	(m ³ /h)	(m/s)	TSP	PM _{2.5}	PM ₁₀	TVOC/N MHC	二甲苯	SO ₂	NOx	NO ₂
	G1	91	-22	0	40	1.2	25	60000	14.74	0.0146	0.0146	0.0146	0.2614	0.0375	0.0063	0.0584	0.0584
	G2	12	-34	0	40	1.6	25	120000	16.58	0.0034	0.0034	0.0034					
	G3	23	-34	0	40	1.1	25	52000	15.20	2.6129	2.6129	2.6129					
	G4	43	-34	0	40	0.6	25	15000	14.74				0.0276				
	G5	79	-34	0	40	1.5	25	104000	16.35	0.8710	0.8710	0.8710					
L	G6	90	-34	0	40	1.2	25	60000	14.74	0.0016	0.0016	0.0016					
点	G7	26	47	0	40	1.8	25	140000	15.28	0.0260	0.0260	0.0260	0.7479	0.1125	0.0063	0.0584	0.0584
源	G8	5	21	0	40	1.6	25	120000	16.58	0.0034	0.0034	0.0034					
	G9	19	21	0	40	1.5	25	104000	16.35	2.6129	2.6129	2.6129					
	G10	26	53	0	40	0.6	25	15000	14.74				0.0276				
	G11	77	21	0	40	1.5	25	104000	16.35	0.8710	0.8710	0.8710					
	G12	85	21	0	40	1.2	25	60000	14.74	0.0016	0.0016	0.0016					
	G13	82	-22	0	40	1	25	48000	16.98	0.0258	0.0258	0.0258	1.0925				
	G14	83	-7	0	40	0.25	25	3000	16.98				0.0090				

备注: 颗粒物经处理后排放, PM10 及 PM2.5 保守按颗粒物排放速率预测

表 2.5-5 正常工况情况下各污染源的预测源强一览表(面源)

污染源名	面源中心	点坐标/m	面源海拔高	面源长	面源宽	与正北方	面源有效排	污染物				
称	X	Y	度/m	度/m	度/m	向夹角/。	放高度/m	TSP	$PM_{2.5}$	PM ₁₀	TVOC/NMHC	二甲苯
厂房二 1F	40	-18	0	109	36	-5	1.5	0.0571	0.0057	0.0280	0.0041	
厂房二 2F	40	-18	0	109	36	-5	11	0.0364	0.0036	0.0178		
厂房二 3F	40	-18	0	109	36	-5	16	0.1290	0.0129	0.0632		
厂房二 4F	40	-18	0	109	36	-5	22	1.2946	0.1295	0.6344	0.4447	0.0450
厂房二 5F	40	-18	0	109	36	-5	28				0.0420	
厂房三 1F	37	35	0	109	35	-5	1.5	0.0737	0.0074	0.0361	0.0041	
厂房三 2F	37	35	0	109	35	-5	11	0.0364	0.0036	0.0178		
厂房三 3F	37	35	0	109	35	-5	16	0.1290	0.0129	0.0632		
厂房三 4F	37	35	0	109	35	-5	20	1.0707	0.1071	0.5246	0.9105	0.1350
厂房三 5F	37	35	0	109	35	-5	28				0.0420	
厂房四 1F	-67	5	0	56	49	-5	1.5	0.0402	0.0040	0.0197		
厂房四 3F	-67	5	0	56	49	-5	16				0.0420	

备注: ①车间按照最不利工况条件统计污染物排放速率。②参考《扬尘源颗粒物排放清单编制技术指南》(试行),"TSP、PM₁₀和PM_{2.5}参考粒径系数为: TSP为1、PM₁₀为0.49、PM_{2.5}为0.1",本项目PM₁₀和PM_{2.5}排放速率分别按TSP排放速率的49%、10%计算。③无组织排放的污染物主要是通过车间抽排风设施排出,面源有效高度按车间窗户的底部高度+车间窗户高度的一半来取值。

楼层	楼层离地高度/m	车间窗户的底部高度+车间 窗户高度的一半/m
1F	0	1.5
2F	9.4	11
3F	15.05	16
4F	20.7	22
5F	26.35	28

3、主要污染源估算模型计算结果

本项目大气主要污染源估算结果详见表 2.5-6。

表 2-5-6 估算模型估算结果一览表

污染源			下风向最大质量	D10%最远距离	评价标准
1774/15	177610	浓度(μg/m³)	浓度占标率%	/ m	$(\mu g/m^3)$
	SO_2	0.0953	0.02	0	500
	NO_2	0.8832	0.44	0	200
	TSP	0.2208	0.02	0	900
<u> </u>	PM_{10}	0.2208	0.05	0	450
G1 排气筒	PM _{2.5}	0.2208	0.10	0	225
	NO _x	0.8832	0.35	0	250
	TVOC	3.9533	0.33	0	1200
	二甲苯	0.5671	0.28	0	200
-	NMHC	3.9533	0.20	0	2000
	TSP	0.0514	0.01	0	900
G2 排气筒	PM ₁₀	0.0514	0.01	0	450
.,, ., .	PM _{2.5}	0.0514	0.02	0	225
	TSP	39.5160	4.39	0	900
G3 排气筒	PM_{10}	39.5160	8.78	0	450
.,, ., .	PM _{2.5}	39.5160	17.56	800	225
	TVOC	0.4174	0.03	0	1200
G4 排气筒	NMHC	0.4174	0.02	0	2000
	TSP	13.1700	1.46	0	900
G5 排气筒	PM ₁₀	13.1700	2.93	0	450
	PM _{2.5}	13.1700	5.85	0	225
	TSP	0.0242	0.00	0	900
G6 排气筒	PM_{10}	0.0242	0.01	0	450
00111 1113	PM _{2.5}	0.0242	0.01	0	225
	SO_2	0.0953	0.02	0	500
<u> </u>	NO_2	0.8832	0.44	0	200
<u> </u>	TSP	0.3932	0.04	0	900
	PM ₁₀	0.3932	0.09	0	450
G7 排气筒	PM _{2.5}	0.3932	0.17	0	225
	NO _x	0.8832	0.35	0	250
	TVOC	11.3110	0.94	0	1200
	二甲苯	1.7014	0.85	0	200
	NMHC	11.3110	0.57	0	2000
	TSP	0.0514	0.01	0	900
G8 排气筒	PM_{10}	0.0514	0.01	0	450
<u> </u>	PM _{2.5}	0.0514	0.02	0	225
	TSP	39.5160	4.39	0	900
G9 排气筒	PM_{10}	39.5160	8.78	0	450
	PM _{2.5}	39.5160	17.56	800	225
C10 排气管	TVOC	0.4174	0.03	0	1200
G10 排气筒	NMHC	0.4174	0.02	0	2000
	TSP	13.1700	1.46	0	900
G11 排气筒	PM ₁₀	13.1700	2.93	0	450
	PM _{2.5}	13.1700	5.85	0	225
	TSP	0.0242	0.00	0	900
G12 排气筒	PM_{10}	0.0242	0.01	0	450
	PM _{2.5}	0.0242	0.01	0	225

>→ Sele Next	>→ Subs at £_	下风向最大质量	下风向最大质量	D10%最远距离	评价标准
污染源	污染物	浓度 (μg/m³)	浓度占标率%	/m	$(\mu g/m^3)$
	TSP	0.3902	0.04	0	900
	PM_{10}	0.3902	0.09	0	450
G13 排气筒	PM _{2.5}	0.3902	0.17	0	225
	TVOC	16.5234	1.38	0	1200
	NMHC	16.5234	0.83	0	2000
C14 批与效	TVOC	0.1517	0.01	0	1200
G14 排气筒	NMHC	0.1517	0.01	0	2000
	TSP	112.7400	12.53	55	900
	PM_{10}	55.2841	12.29	55	450
厂房二 1F	PM _{2.5}	11.2543	5.00	0	225
	TVOC	8.0952	0.67	0	1200
	NMHC	8.0952	0.40	0	2000
	TSP	19.3140	2.15	0	900
厂房二 2F	PM_{10}	9.4448	2.10	0	450
	PM _{2.5}	1.9102	0.85	0	225
	TSP	35.3800	3.93	0	900
厂房二 3F	PM_{10}	17.3335	3.85	0	450
	PM _{2.5}	3.5380	1.57	0	225
	TSP	195.8800	21.76	250	900
	PM_{10}	95.9882	21.33	225	450
厂房二 4F	PM _{2.5}	19.5941	8.71	0	225
/ //3 41	TVOC	67.2855	5.61	0	1200
	二甲苯	6.8087	3.40	0	200
	NMHC	67.2855	3.36	0	2000
厂房二 5F	TVOC	0.0000	0.00	0	1200
/ // 31	NMHC	4.5450	0.23	0	2000
	TSP	148.2600	16.47	55	900
	PM_{10}	72.6212	16.14	55	450
厂房三 1F	PM _{2.5}	14.8864	6.62	0	225
	TVOC	8.2478	0.69	0	1200
	NMHC	8.2478	0.41	0	2000
	TSP	19.4840	2.16	0	900
厂房三 2F	PM ₁₀	9.5279	2.12	0	450
	PM _{2.5}	1.9270	0.86	0	225
	TSP	35.6830	3.96	0	900
厂房三 3F	PM ₁₀	17.4819	3.88	0	450
	PM _{2.5}	3.5683	1.59	0	225
	TSP	185.5100	20.61	225	900
	PM ₁₀	90.8924	20.20	200	450 225
厂房三 4F	PM _{2.5}	18.5562	8.25	0	
	TVOC	157.7537	13.15	125	1200
	二甲苯	23.3902	11.70	100	200
	NMHC	157.7537	7.89	0	2000
厂房三 5F	TVOC	4.5837	0.38	0	1200
, ,,,= 51	NMHC	4.5837	0.23	0	2000
	TSP	96.6610	10.74	29	900
厂房四 1F	PM ₁₀	47.3687	10.53	29	450
	PM _{2.5}	9.6180	4.27	0	225
厂房四 3F	TVOC	12.0900	1.01	0	1200
	NMHC	12.0900	0.60	0	2000

根据估算结果可知,本项目主要大气污染物的最大落地浓度占标率为 <u>21.76%</u>(无组织排放的 TSP),大于 10%,依据《环境影响评价技术导则 大气环境》(HJ 2.2-2018),

确定项目的大气环境评价等级为一级。

2.5.1.2地表水环境评价等级

根据《环境影响评价技术导则 地表水环境》(HJ2.3-2018)中的要求,地表水环境 影响评价工作等级按照影响类型、排放方式、排放量或影响情况、受纳水体环境质量现 状、水环境保护目标等综合确定。水污染影响型建设项目根据排放方式和废水排放量划 分评价的等级。

		判定依据
评价等级	排放方式	废水排放量 Q/(m³/d) 水污染物当量数 W/(无量纲)
一级	直接排放	Q≥20000 或 W≥600000
二级	直接排放	其他
三级 A	直接排放	Q<200 且 W<6000
三级 B	间接排放	

表 2.5-7 水污染影响型建设项目评价等级判定

通过工程分析,项目营运期外排废水主要是生活污水,属于水污染物影响型建设项目,因此按照排放方式和废水量划分评价等级。本项目生活污水纳入杏坛污水处理厂进行处理,废水排放方式为间接排放。

根据《环境影响评价技术导则 地表水环境》(HJ2.3-2018)中的地表水环境影响评价等级判据,确定该项目地表水环境影响评价等级为三级 B。

2.5.1.3地下水环境评价等级

本项目为工业项目,在项目建设、生产运行过程中,可能造成地下水水质污染。本项目场地地形简单,岩土层结构变化不大,场地及附近无滑坡、岩溶、活动断裂等不良地质作用,场地的稳定性较好。本项目不对地下水进行抽取利用,因此本项目基本不会引起地下水流场或地下水位变化,亦不会导致环境水文地质问题。

根据区域水文地质图、岩土工程勘探结果、《广东省人民政府关于印发部分市乡镇集中式饮用水源保护区划分方案的通知》(粤府函〔2015〕17号)等文件,本项目地下水环境敏感程度判定为"不敏感",判定过程如下:

- 1)集中式饮用水源: HJ610-2016 指进入输水管网送到用户的且具有一定供水规模 (供水人口一般不小于 1000 人)的现用、备用和规划的地下水饮用水源。根据《广东 省人民政府关于印发部分市乡镇集中式饮用水源保护区划分方案的通知》(粤府函 〔2015〕17号〕,项目所在地附近没有现用、备用和规划的地下水饮用水源。
- 2)分散式饮用水水源: HJ610-2016 指供水小于一定规模(供水人口一般小于 1000 人)的地下水饮用水水源地。根据《分散式饮用水水源地环境保护指南》,地下水水源保护范围为取水口周边 30m~50m 范围,本项目周边不存在分散式饮用水源保护区。
- 3)特殊地下水资源:特殊地下水资源一般和特殊地质有关(断裂、岩溶等),根据岩土工程勘探报告、广东省地下热水分布图、1:20万综合水文地质图等资料,本项目所在区域无特殊地下水资源分布。
- 4) 其他环境敏感区:《建设项目环境影响评价分类管理名录》针对"家具制造"没有特指的地下水环境敏感区。

项目所在区域不属于 HJ 610-2016"表 1 地下水环境敏感程度分级表"中所列明的敏感区【集中式饮用水水源(包括已建成的在用、备用、应急水源,在建和规划的饮用水水源)准保护区,除集中式饮用水水源以外的国家或地方政府设定的与地下水环境相关的其他保护区(如热水、矿泉水、温泉等特殊地下水源保护区)】,也不属于较敏感区【集中式饮用水水源(包括已建成的在用、备用、应急水源,在建和规划的饮用水水源)准保护区以外的补给径流区;未划定准保护区的集中式饮用水水源,其保护区以外的补给径流;分散式饮用水水源地;特殊地下水资源(如矿泉水、温泉等)保护区以外的分布区等其他未列入上述敏感分级的环境敏感区】,因此项目场地地下水环境敏感程度级别为不敏感。

根据《环境影响评价技术导则 地下水环境》(HJ 610-2016),本项目属于附录 A 中的"N 轻工——109、锯材、木片加工、家具制造"类别,环境影响报告书中地下水环境影响评价项目最高类别为 III 类。

本项目所在场地地下水评价工作等级判定,详见下表。

环境敏感程度	I 类项目	II类项目	III 类项目
敏感	_	_	=
较敏感		=	1
不敏感		三	111

表 2.5-8 项目地下水评价工作等级划分判据一览表

综上所述,根据《环境影响评价技术导则 地下水环境》(HJ 610-2016)"表 2 评价工作等级分级表"进行判断可知,项目地下水环境影响评价工作等级为三级。

2.5.1.4声环境评价等级

本项目所在地属于 GB3096-2008 规定的 3 类声环境功能区,项目建设前后评价范围内敏感目标噪声级增高量小于 3dB(A),且受影响人口数量变化不大。根据《环境影响评价技术导则 声环境》(HJ2.4-2021)判定,确定本项目噪声环境影响评价等级为三级。

2.5.1.5土壤环境评价等级

本项目主要从事家具的加工生产,生产工艺主要木加工、喷漆等,属于污染影响型项目。根据《国民经济行业分类》(GB/T 4754-2017)(按第 1 号修改单修订),本项目行业类别为 C2110 木质家具制造。根据《环境影响评价技术导则土壤环境(试行)》(HJ 964-2018),本项目属于附录 A 中制造业中"其他用品制造"的"使用有机涂层的(喷粉、喷塑和电泳除外)"类别,则本项目的土壤环境影响评价项目类别为 I 类。

根据后文工程分析及 HJ 964-2018 中附录 B 可知,本项目土壤环境影响途径主要为大气沉降,详见下表。

不同时段		污染影响型					生态影响型				
	大气沉降	地面漫流	垂直入渗	其他	盐化	碱化	酸化	其他			
建设期	-	-	-	-	-	-	-	-			
运营期	V	-	-	-	-	-	-	-			
服务期满后	-	-	-	-	-	-	-	-			

表 2.5-9 项目土壤环境污染类型和途径

备注: 在可能产生的土壤环境影响类型处打"√"。

本项目位于广东省佛山市顺德区杏坛镇光华村德彦大道 1 号之一,占地面积约为 43231.60m²,属于小型规模。

项目南面约 42m 处为鱼塘,北面约 250m 处为住宅区;因此,项目所在地土壤敏感程度属敏感。

根据《环境影响评价技术导则 土壤环境(试行)》(HJ 964-2018)中的评价工作等级分级判据,确定本项目土壤环境影响评价等级为**一级**,详细判定依据见表 2.5-10。

表 2.5-10 项目土壤评价工作等级划分判据

敏感程度		I类项目			II类项目			III类项目	
占地规模	大	中	小	大	中	小	大	中	小
敏感	一级	一级	一级	二级	二级	二级	三级	三级	三级
较敏感	一级	一级	二级	二级	二级	三级	三级	三级	_
不敏感	一级	二级	二级	二级	三级	三级	三级	_	

备注: "一"表示可不开展土壤环境影响评价工作。

2.5.1.6生态环境评价等级

根据《环境影响评价技术导则 生态影响》(HJ 19-2022),生态影响评价工作等级判定见下表。

序号 确定原则 判定 项目不涉及国家公园、自然 涉及国家公园、自然保护区、世界自然遗产、重要生境时, 保护区、世界自然遗产、重 a) 评价等级为一级 要生境 涉及自然公园时,评价等级为二级; 项目不涉及自然公园 **b**) 涉及生态保护红线时, 评价等级不低于二级 项目不涉及生态保护红线 c) 根据 HJ 2.3 判断属于水文要素影响型且地表水评价等级不 项目不属于水文要素影响型 d) 低于二级的建设项目, 生态影响评价等级不低于二级 根据 HJ 610、HJ 964 判断地下水水位或土壤影响范围内分 地下水水位或土壤影响范围 布有天然林、公益林、湿地等生态保护目标的建设项目,生 内没有天然林、公益林、湿 e) 态影响评价等级不低于二级 地等生态保护目标分布 当工程占地规模大于 20 km² 时(包括永久和临时占用陆域 项目为重新报批项目,工程 f) 和水域),评价等级不低于二级;改扩建项目的占地范围以 占地(含水域)范围约 0.0432km²,小于 20km² 新增占地(包括陆域和水域)确定 除本条 a)、b)、c)、d)、e)、f)以外的情况,评价等 g) 级为三级 项目评价等级为三级 当评价等级判定同时符合上述多种情况时, 应采用其中最高 h) 的评价等级。

表 2.5-11 生态环境评价工作等级

本项目不涉及水域范围,因此,本项目不对水域生态环境影响进行评价。项目生态 影响评价工作等级为三级。

2.5.1.7环境风险影响评价等级

根据《建设项目环境风险评价技术导则》(HJ169-2018),本项目的风险评价等级根据本项目涉及的物质及工艺系统危险性和项目区域的环境敏感性确定环境风险潜势,环境风险评价等级划分见表 2.5-12。

表 2.5-12 风险评价工作等级划分

环境风险潜势	IV、IV ⁺	III	II	I
评价工作等级		\equiv	=	简单分析

建设项目环境风险潜势划分为I、II、III、IV、IV+级。根据建设项目涉及的物质和工艺系统的危险性及其所在地的环境敏感程度,结合事故情形下环境影响途径,对建设项目潜在环境危害程度进行概化分析,按照下表确定环境风险潜势。

表 2.5-13 环境风险潜势划分

	危险物质及工艺系统危险性(P)					
	极高危险(P1)	高度危险(P2)	中度危险(P3)	轻度危险 (P4)		
环境高度敏感区(E1)	IV^+	IV	III	III		
环境中度敏感区(E2)	IV	III	III	II		
环境低度敏感区(E3)	III	III	II	I		
注. IV+为极高环境风险						

根据第六章中运营期环境风险评价分析内容,本项目 Q<1;根据《建设项目环境风险评价技术导则》(HJ169-2018),本项目风险潜势为 I ,即本项目环境风险评价等级为"简单分析"。

2.5.2 评价范围

2.5.2.1大气环境评价范围

根据《环境影响评价技术导则 大气环境》(HJ 2.2-2018),本项目大气环境影响评价工作等级属于一级,一级评价项目根据项目排放污染物的最远影响距离(D_{10%})确定大气环境影响评价范围。根据估算结果,本项目主要大气污染物的最大落地浓度占标率为 21.76%,占标率 10%的最远距离 D10%为 800m,因此项目大气环境影响评价范围为以项目厂址为中心区域,自厂界外延 2.5km 形成的边长 5km 矩形区域。

2.5.2.2地表水环境评价范围

根据《环境影响评价技术导则 地表水环境》(HJ2.3-2018)中的规定,三级 B 其评价范围应符合以下要求: a)应满足其依托污水处理设施环境可行性分析的要求: b)

涉及地表水环境风险的, 应覆盖环境风险影响范围所及的水环境保护目标水域。

考虑本项目的地表水环境影响评价工作等级属三级 B,本项目生活污水的纳污水体为北马河、顺德支流,确定本项目的地表水环境评价范围为杏坛污水处理厂排污口上游500m 至下游 1500m 处。

2.5.2.3地下水环境评价范围

根据《环境影响评价技术导则 地下水环境》(HJ610-2016)的有关要求,本项目 地下水环境影响评价等级为三级。

项目不使用地下水,在做好污染防治措施的前提下基本不会影响地下水,采用自定义法确定评价范围,项目所在地水文地质条件相对简单,调查评价区处于一个相对独立的水文地质大单元内,根据补径排条件,确定评价范围东侧以麦村大涌为界,南侧以东海水道为界,西侧以南光大涌为界,北侧以东海大涌为界,评价范围约 12.6km²。

2.5.2.4声环境评价范围

根据《环境影响评价技术导则 声环境》(HJ2.4-2009),本项目的声环境影响评价等级为三级,评价范围为项目区域及周边 200m 范围内区域。

2.5.2.5土壤环境评价范围

根据《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018),本项目的土壤环境影响评价等级为一级,因此,确定土壤环境评价范围为项目占地范围及项目边界外延 1000m 范围内。

2.5.2.6生态环境评价范围

项目选址区域为工业用地,选址及周边无国家级珍稀濒危物种,生态影响范围主要是用地周围区域,其影响面积<20km²,对周围物种多样性影响程度小,不涉及特殊生态敏感区及重要生态敏感区,根据《环境影响评价技术导则 生态影响》(HJ 19-2022),确定生态影响评价工作等级为三级。

根据《环境影响评价技术导则 生态影响》(HJ19-2022)中的有关规定,确定生态影响评价范围为:项目占地范围及项目边界外延 200m 范围内。

2.5.2.7环境风险影响评价范围

根据《建设项目环境风险评价技术导则》(HJ169-2018),本项目的环境风险潜势为I,因此只需要进行简单分析,不设置评价范围。

2.5.2.8项目评价范围图

地表水、地下水、大气、土壤评价范围详见图 2.5-2, 声、生态评价范围详见图 2.5-3。

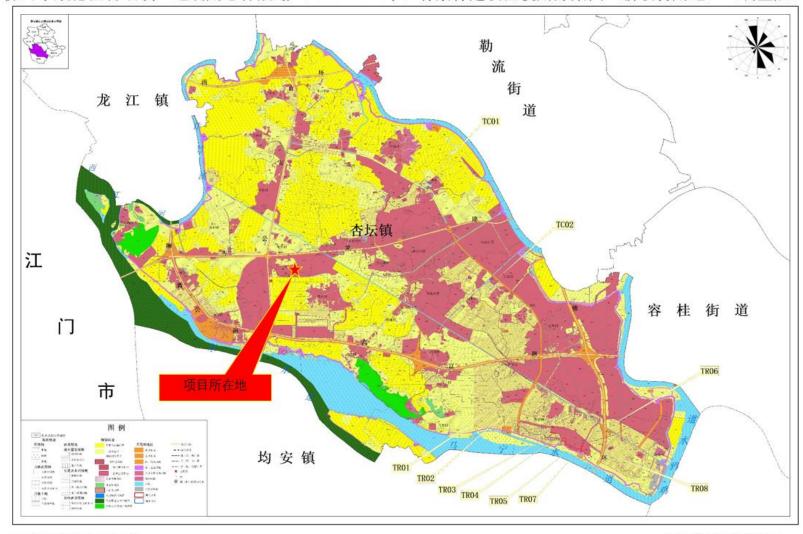


图 2.5-2 地表水、地下水、大气、土壤环境评价范围图

图 2.5-3 声、生态评价范围图

佛山市顺德区杏坛镇土地利用总体规划(2010-2020年)有条件建设区使用方案图(新联村用地)(调整后)

传山市自然资源局项德分局各层管理所 编制 一〇二、年十一月 佛山市自然资源局顺德分局杏坛管理所 广州地量行城乡规划有限公司

图 2.5-4 项目及周边土地利用规划图

2.5.3 评价工作等级和评价范围汇总

本环境影响评价工作等级划分汇总情况见下表。

表 2.5-13 评价工作等级划分汇总表

内容	评价等级	评价范围	依据说明
环境空气	一级	以项目厂址为中心区域,自厂界外延的矩形区域,边 长取 5km	НЈ 2.2-2018
地表水环境	三级 B	杏坛污水处理厂排污口上游 500m 至下游 1500m 处	НЈ 2.3-2018
地下水环境	三级	采用自定义法, 东侧以麦村大涌为界, 南侧以东海水道为界, 西侧以南光大涌为界, 北侧以东海大涌为界	НЈ 610-2016
声环境	三级	项目区域及周边 200m 范围内区域	HJ 2.4-2021
土壤环境	一级	项目占地范围及项目边界外延 1000m 范围	НЈ 964-2018
生态环境	陆域:三级 水域:不涉及	项目周围 200m 的区域	НЈ 19-2022
环境风险	简单分析	不设置评价范围(风险潜势I,进行简单分析)	НЈ 169-2018

2.6 环境保护目标

2.6.1 污染控制目标

- 1、项目所在区域保护水体为北马河和顺德支流,保护级别为《地表水环境质量标准》(GB3838-2002)的V类、III类标准。
- 2、大气污染物能够达标排放,使建设项目所在地及周边地区环境空气质量达到《环境空气质量标准》(GB3095-2012)及修改单(生态环境部公告 2018 年 第 29 号)二级标准、《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D 中其他污染物空气质量浓度参考限值。
 - 3、控制营运期设备噪声的排放,确保周边地区声环境质量达到《声环境质量标准》 (GB3096-2008)3类标准,对附近居民不造成明显影响。
 - 4、有效控制建设项目固体废物排放,使项目所在区域的生态环境得到保护。
- 5、加强生产车间以及危险废物暂存间等重点区域的防渗措施,有效控制大气环境 污染物排放,使项目周边区域的土壤环境得到有效保护。

2.6.2 环境保护目标

本项目主要环境保护目标具体情况见表 2.6-1(以项目中心为坐标原点),自项目 厂界外延边长 5km 范围内的环境保护目标位置示意图见图 2.6-1。

表 2.6-1 本项目厂界外延边长 5km 范围内主要环境保护目标

序	敏感点名	坐材	汞/m	保护对	相对厂	相对厂界距	保护内	人数	环境功能区
号	称	X	Y	象	址方位	离/m	容	八奴	小兔 切配区
1	农用地	-155	-95	农用地	南	50	农用地	/	土壤: 农用地
2	光华村	-327	536	住宅	西北	250	人群	8140	
3	潘祥实验 学校	-483	-44	学校	西面	360	人群	1200	环境空气: 二类
4	光华小学	-446	658	学校	西北	620	人群	570	土壤:一类用地
5	麦村	1078	-788	住宅	东南	530	人群	9370	
6	麦村小学	980	-628	学校	东南	980	人群	780	
7	罗水社区	1729	731	住宅	东北	1485	人群	3480	
8	杏坛社区	2427	-18	住宅	东面	2100	人群	4860	
9	杏联中学	2406	183	住宅	东北	2265	人群	1620	
10	龙潭村	2045	2157	住宅	东北	2660	人群	800	
11	西登村	1771	-2248	住宅	东南	2600	人群	1000	
12	南华村	-1925	-1416	住宅	西南	1590	人群	4070	
13	南华小学	-2157	-1422	学校	西南	2480	人群	260	环境空气: 二类
14	东村	-2312	1182	住宅	西北	1660	人群	4160	
15	东村树人 小学	-2235	981	学校	西北	2160	人群	460	
16	杏坛中心 区规划居 住用地	2045	155	住宅	东北	2040	人群	0	

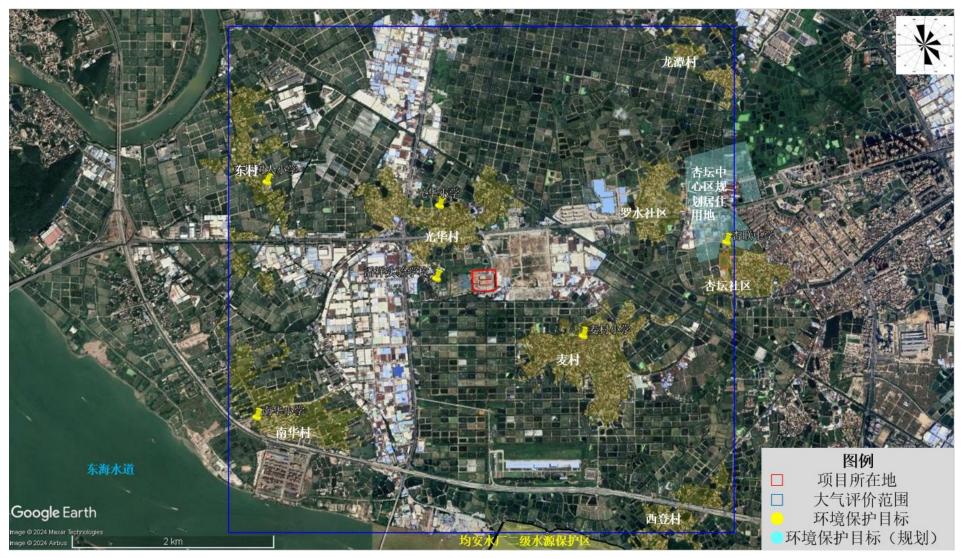


图2.6-1 本项目大气评价范围内环境保护目标分布图

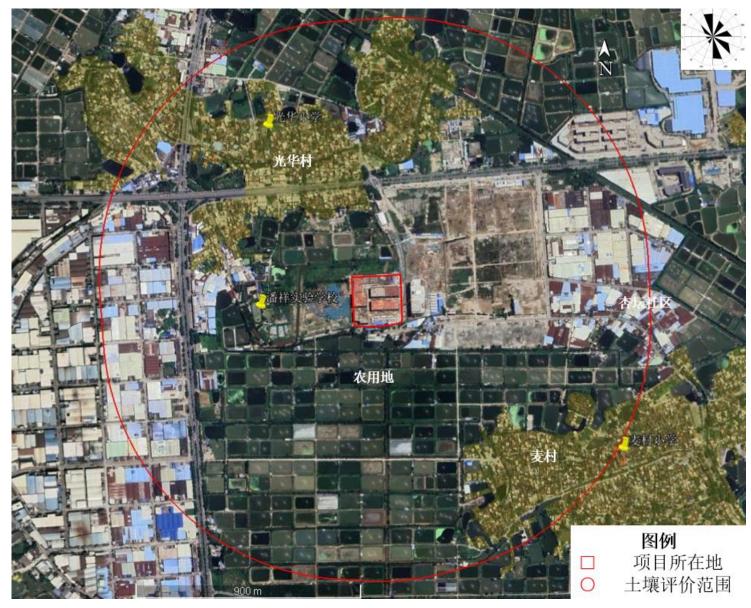


图2.6-2 本项目土壤评价范围内环境保护目标分布图

3 建设项目概况与工程分析

3.1 建设项目概况

3.1.1 项目基本概况

项目名称:广东阅生活家居科技有限公司广东阅生活总部基地建设项目

建设单位:广东阅生活家居科技有限公司

行业类别及代码: C2110 木质家具制造

建设性质:新建(重新报批)

建设地点:广东省佛山市顺德区杏坛镇光华村德彦大道 1 号之一(中心地理坐标: 北纬 22.783161°, 东经 113.118682°)。

总投资:本项目总投资 30600 万元,环保投资约 1140 万元。

建设规模: 年产套房家具9万件、装饰材料1万件、全屋定制产品5万件。

占地面积:本项目占地面积为43231.60平方米,总建筑面积121825.8平方米。

职工人数:本项目员工人数为800人,厂区内设有食堂、宿舍,其中600人在厂内就餐及住宿。

工作制度:每天工作10小时,工作时间为8:00~18:00,年工作330天。

图 3.1-1 广东阅生活家居科技有限公司现状

3.1.2 项目位置及四至环境

本项目位于广东省佛山市顺德区杏坛镇光华村德彦大道 1 号之一,项目东面为悍高集团六角大楼生产基地,南面为工业厂房,西面为在建厂房,北面为空地,项目及周边现状见图 3.1-2,项目四至情况见图 3.1-3。

图 3.1-2 项目及周边现状图



图3.1-3 本项目四至示意图

3.1.3 项目建设规模及产品方案

1) 建设规模

项目生产规模详见表 3.1-1。

表 3.1-1 项目生产规模一览表

序号	产品名称	单位	年产量	备注
1	套房家具	件/年	90000	餐桌、餐椅、茶几、茶台、床、床头柜、电视柜、衣柜、沙发、书架、鞋柜、衣帽架、客厅柜、书椅、书桌、梳妆台、梳妆凳,各产品数量详见表 3.1-2
2	装饰材料	件/年	10000	主要以五金、木制品为主的屏风、家具饰品等产品
3	全屋定制 产品	件/年	50000	衣柜、书柜、门厅柜、入户柜等柜体

2) 各种加工工艺优缺点及市场供应情况

本项目生产的家具采用喷漆加工,喷漆板材面光滑平整,色泽饱满,富有质感,不易受潮、变形、变色和损坏,并且易于清洁保养,长时间使用后仍能保持光亮度和美观度,镜面效果好,广泛用于高档家具。

本项目喷漆板材具体细分为两类涂料:油性漆和 UV 漆,其中油性漆漆膜附着很强,硬度适中,光泽匀称,也具有很好的柔韧性,市场接受度较好,使用油性漆喷涂的产品质量高,适用于需要高度耐用和美观效果的高档家具,油性漆缺点是干燥时间偏长; UV 漆不但环保而且漆膜硬度和平整度最高,同时干燥时间短,耐磨性很强,市场接受度较好,缺点是漆膜柔韧度一般,且生产成本相对较高,通常固化后形成高厚度漆膜,漆膜硬度高,封闭效果强,因此显示基材自带木纹及效果较差。UV 漆仅能在直射 UV 光下固化,对于形状复杂、有遮挡或凹陷部位的家具,难以实现均匀固化,容易在棱角或隐蔽处产生裂纹、白点等问题,其产品质量比油性漆要低。

因此,考虑需要显示基材纹理的实木家具产品,或对美观效果及质量有较高要求的产品,会优先考虑使用油性漆进行喷涂。根据企业调查行业需求情况,确定本项目套房家具、装饰材料及全屋定制产品中的弧形转角部件采用油性漆喷涂,全屋定制产品中的板件采用较为环保的 UV 漆进行喷涂。

3)产品方案

表 3.1-2 项目产品(套房家具)方案

序号	产品	图片	涂装方案	单位	产品规格	年产量/件
1	餐桌	850 < 2200	正反面均需喷漆	mm	2200*850* 760	
2	餐椅	782	正反面均需喷漆	mm	551*500*7 52	22000
3	茶几	430	正反面均需喷漆	mm	1100*1100 *430	4500
4	茶台	1700 900 510 680	正反面均需喷漆	mm	1700*900* 680	3000
5	床	2165 800 1945 580	床头、床尾、床 架需喷漆	mm	1945*2165 *1230	5500
6	床头柜	580 420 620 468	正反面均需喷漆	mm	580*420*6 20	11000

序号	产品	图片	涂装方案	单位	产品规格	年产量/件
7	电视柜	\$\tag{150}\$	正反面均需喷 漆	mm	1800*400* 600	4000
8	衣柜	2200	正反面均需喷漆	mm	860*580*2 200	3500
9	沙发	2080 山水沙发-三位	除软体外均需喷漆	mm	2080*930* 750	7000
10	书架	2180	正反面均需喷漆	mm	2800*600* 2180	3500
11	鞋柜	1080	正反面均需喷 漆	mm	1600*500* 1080	3500

序号	产品	图片	涂装方案	单位	产品规格	年产量/件
12	衣帽架	1600	正反面均需喷漆	mm	1090*500* 1600	2000
13	客厅 柜	1051	正反面均需喷漆	mm	1403*450* 1051	3500
14	书椅	1012 455 670	除软体外均需喷漆	mm	600*670*1 012	6000
15	书桌	1051	正反面均需喷漆	mm	1460*450* 1051	3500

序号	产品	图片	涂装方案	单位	产品规格	年产量/件
16	梳妆台	420 420 403 747 950	正反面均需喷漆	mm	950*420*7 47	2000
17	梳妆凳	440	正反面均需喷漆	mm	360*360*4 40	2000

4、涂装方案

各产品规格根据客户需求进行定制,本评价统一采用平均规格进行核算,本项目产品涂装方案详见下表。从表 3.1-3 可知,油性底漆和油性面漆喷涂面积为 $811945m^2/a$, UV 底漆和 UV 面漆喷涂面积为 100 万 m^2/a 。

表 3.1-3 本项目主要产品涂装方案一览表

	r连込 <u>料</u> 具	唯公元		油性	底漆	油性	面漆	UV	底漆	UV	面漆
产品	喷涂数量 (件/年)	喷涂面 积 m²	涂装方式	单层喷涂干膜 厚度 μm/件	喷漆层数/层	单层喷涂干膜 厚度 μm/件	喷漆层数/层	d/层 単层喷涂干 横厚度 μm/件 喷彩	喷漆层数/层	单层喷涂干 膜厚度 μm/件	喷漆层数/层
餐桌	3500	6.71	手动	12	2	8	2	/	/	/	/
餐椅	22000	2.08	手动	12	2	8	2	/	/	/	/
茶几	4500	5.87	手动	12	2	8	2	/	/	/	/
茶台	3000	21.89	手动	12	2	8	2	/	/	/	/
床	5500	19.08	手动	12	2	8	2	/	/	/	/
床头柜	11000	5.26	手动	12	2	8	2	/	/	/	/
电视柜	4000	11.94	手动	12	2	8	2	/	/	/	/
衣柜	3500	21.97	手动	12	2	8	2	/	/	/	/
沙发	7000	9.82	手动	12	2	8	2	/	/	/	/
书架	3500	7.00	手动	12	2	8	2	/	/	/	/
鞋柜	3500	18.37	手动	12	2	8	2	/	/	/	/
衣帽架	2000	3.12	手动	12	2	8	2	/	/	/	/
客厅柜	3500	18.45	手动	12	2	8	2	/	/	/	/
书椅	6000	2.90	手动	12	2	8	2	/	/	/	/
书桌	3500	13.42	手动	12	2	8	2	/	/	/	/
梳妆台	2000	4.24	手动	12	2	8	2	/	/	/	/
梳妆凳	2000	0.98	手动	12	2	8	2	/	/	/	/
装饰材料	10000	1.0	手动	12	2	8	2	/	/	/	/
全屋定制 产品弧形 转角部件	50000	1.0	手动	12	2	8	2	/	/	/	/
全屋定制 产品板件		20	自动	/	/	/	/	16	2	12	2

注:①项目单件产品涂装面积由建设单位根据设计图展开计算;②结合客户需求,项目产品小类较多,主要是规格型号、大小和轻微细节不同,其他方面基本一致,本项目仅选取每种产品中具有代表性(预计销售量大、总喷涂面积适中)的产品类型进行分析;③全屋定制产品中的弧形转角部件采用油性漆手工喷涂,全屋定制产品中的板件采用较为环保的UV漆进行自动喷涂。

3.1.4 项目组成及平面布置

合计

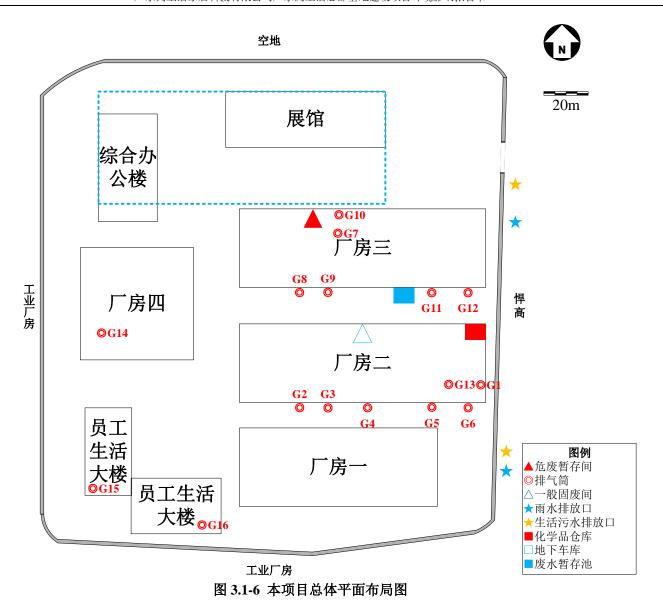
17573.8

本项目总占地面积约为 43231.60 平方米,总建筑面积约为 121825.8 平方米。本项目主要建筑、构筑物参数详见下表,厂区平面布局具体可见图 3.1-6~图 3.1-12。

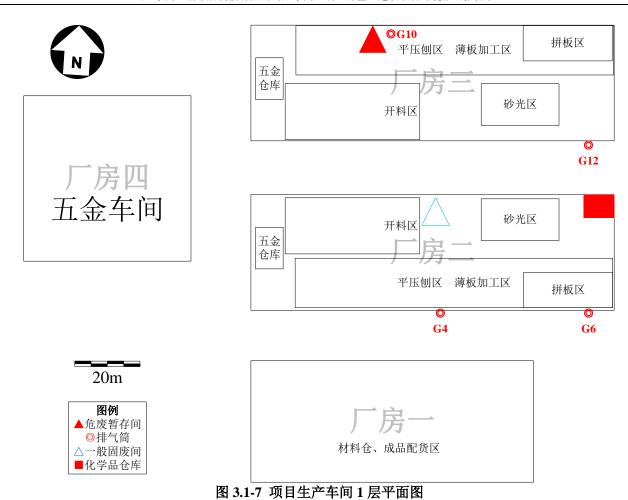
建筑物名 占地面积 序号 层数 总建筑面积 m² 计容面积 m² 高度 m 建筑类别耐火等级结构型式 m^2 称 厂房一 6F 3132 19892 22524 37.65 丙类 二级 框架 1 2 房二 6F 3898 23618 27286 37.65 丙类 级 框架 3 厂房三 3795 24403 27180 37.65 丙类 级 轻钢 6F 厂房四 19599 丙类 级 框架 4 6F 2742 17062 37.65 5 宿舍大楼 11F 1325 15131 15039 39.65 丙类 :级 框架 综合办公 框架 二级 6 11F 1333 12740 13852.5 49.55 丙类 楼 7 展馆 3F 1188 3020 3178 11.85 丙类 二级 框架 门卫室一 80.4 84.9 84.9 丙类 1级 框架 8 1F 3.5 门卫室二 1F 80.4 84.9 84.9 3.5 丙类 二级 框架 地下停车 框架 1F / 10 3.8 5770 场

表 3.1-4 厂区内各建筑物参数

表 3.1-5 主要经济指标表


139379.6

1

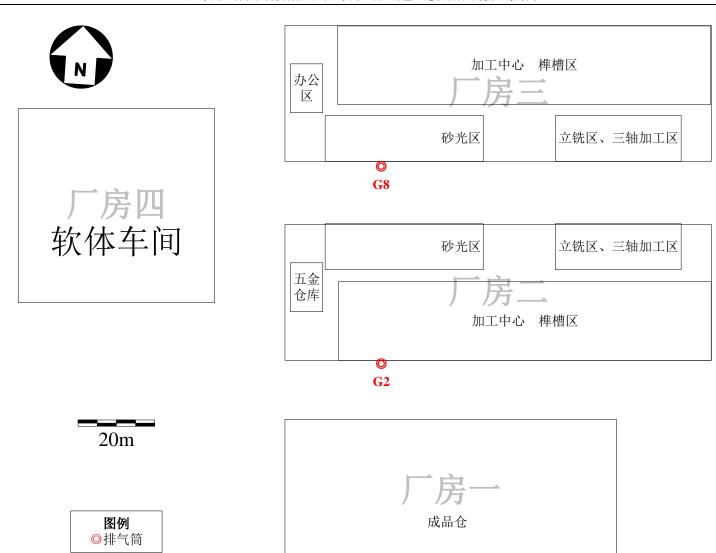
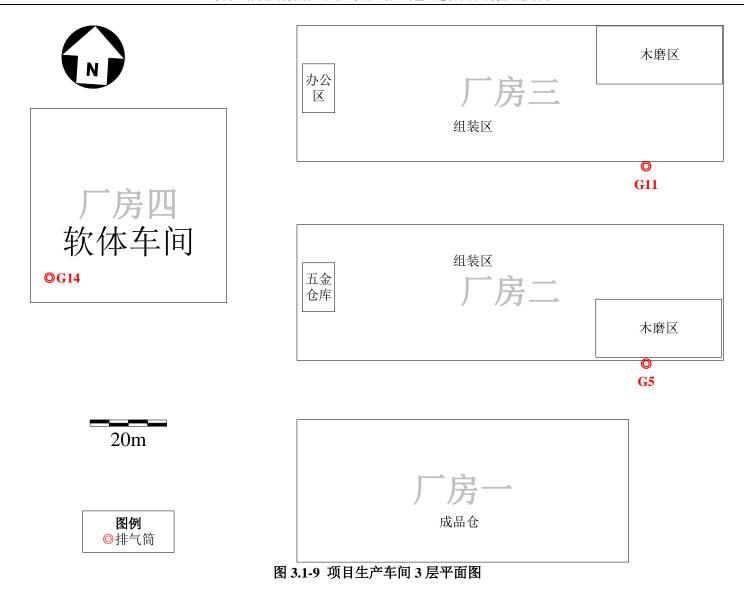
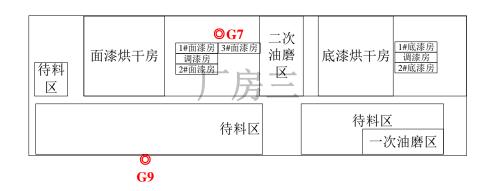

1

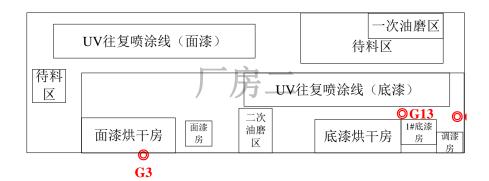
121825.8

指标	单位	指标	规划条件	相符性
规划总用地面积	m ²	43231.60	43231.60	符合
总建筑面积	m^2	121825.8	/	/
计算容积率建筑面积	m^2	128828.3	86463.20≤计算容积率建 筑面积≤129694.80	符合
建筑覆盖率(一级/二级)	%	建筑覆盖率(一级/二级)	/	/
容积率		2.99	2.0≤FAR≤3.0	符合
建筑密度	%	40.65	35≤D≤60	符合
绿地率	%	10	≤20 (且≥10)	符合
道路及广场用地面积	m ²	21530.02	/	/
最高高度	m	49.55	生产厂房≤50,配套设施 ≤80	符合
最大层数	层	11	/	/

第86页

第87页


图 3.1-8 项目生产车间 2 层平面图

厂房四 成品仓库

20m

图例 ○排气筒

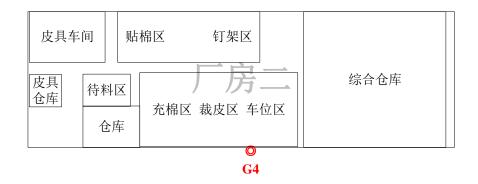


图 3.1-10 项目生产车间 4 层平面图

厂房四 成品仓库

20m

图例 ○排气筒

图 3.1-11 项目生产车间 5 层平面图

厂房三 安包装区、成品仓

厂房四 成品仓库

> **厂房二** 安包装区、成品仓

20m

厂房一 ^{成品仓}

图 3.1-12 项目生产车间 6 层平面图

本项目由主体工程、配套工程、公用工程、环保工程、储运工程等构成,其工程内 容详见下表。

表 3.1-6 本项目组成及工程内容

项目		 内容			个 坝日红		用途
7 1			# 6 🖽		100022	117	1 1
	,	厂房一	共 6 层,	建巩固炽共	19892m ⁻		材料仓、成品配货区; 2~6F: 成品仓
							五金车间、木工开料车间;
							木加工车间
		厂房二	共6层.	建筑面积共	23760m ²	4	组装车间、木磨车间;
	,	/ //])		喷漆车间	
							软体车间、皮具车间;
						6F:	安包装车间、成品仓库
						1F:	五金车间、木工开料车间;
+ 4						2F:	木加工车间
主体		一中一	# 6 🖽	油炒 蛋和 +	22760 2	3F:	组装车间、木磨车间;
工程	,	厂房三	共 6 层,	建筑面积共	23/60m ²	4F:	喷漆车间
						5F:	软体车间、皮具车间;
							安包装车间、成品仓库
						_	五金加工车间;
		厂房四	共6层,	建筑面积共			
	,	// // III		201m100			F: 成品仓库
	72	 f舍大楼	井 11	建筑面和出			1F 为员工食堂, 2~11F 为员工宿舍
				建筑面积共		_	
	尓	<u>ロがなし</u> 展馆		建筑面积共		_	
△ //±		茂埍	共 3 伝,	建巩固你开	3020III ⁻	川]	多
仓储	原	材料仓库				用于	存放原辅材料,位于生产车间内
工程	- THE-	コムズル		<u> </u>		ш	- 4 文田 4 和 4 八 4 江田 4
公用		出电系统		1 套			生产用电和办公生活用电
工程	给:	排水系统		1 套			来源为市政自来水理厂
	生活污水		l 套			废水经隔油隔渣、生活污水经三级化粪处理	
					达标后通过市政管道排入杏坛污水处理厂		
	<u> </u>	E产废水	Z = \ \ F	1 套	.t. tt. amt \E		凝沉淀处理设施,减少喷淋废水更换频次
		木工废气					厂房二及厂房三各设置2套;
				主收集并经"有	F袋除尘	器"处	:理后引至 40m 排气筒 G2、G6、G8、G12 排
			放。				
							〈帘柜除漆雾,然后和烘干废气一起通过"二级
						及附-月	脱附+催化燃烧"废气处理设施进行处理,处理
			后引至4	0m 排气筒 G	31 排放;		
			厂房二U	IV 漆喷涂废	气收集并	「经过	上滤棉除漆雾,然后和烘干废气一起通过"水喷
环保	喷	涂烘干废气	淋+干式:	过滤器+活性	炭吸附"	废气	处理设施进行处理,处理后引至 40m 排气筒
工程	_{र्यव्य}		G13 排放	ζ;			
	废		厂房三油	性漆喷漆废	气收集并	f经水	〈帘柜除漆雾,然后和烘干废气一起通过2套
	气		"二级水	喷淋+干式过	滤"处理	!后一	·并经"沸石转轮吸附-脱附+催化燃烧"废气处
			理设施进	上行处理,处	理后引至	₹ 40n	n 排气筒 G7 排放。
			催化燃烧	装置产生的	天然气燎		受气随喷涂烘干废气一起经排气筒 G1、G7 排
		燃烧净气	放。				
			-	3套胶水废	气处理长	<u></u> }施,	厂房二、厂房三、厂房四各设置1套; 胶水
		腊似罗气			•		i引至 40m 排气筒 G4、G10、G14 排放
							置 12 套,厂房三设置 16 套;木磨、油磨工序
		オー欧 岩 / コ					■ 12 丢,/ / // // // // // // // // // // // //
							至气处理设施; 五金抛光工序的粉尘收集并经
		亚ルルルタ て	火口红	/////////////////////////////////////	云丛並扒	3ノレルタ	() 风柱以肥; 山亚肥儿上厅即忉土以果井红

项目	内容		规模	用途
			"水帘柜"处理后在车间内无组	织排放
		危废暂存间废	危废暂存间的有机废气收集后	与厂房三胶水废气一并经"活性炭吸附"处理后
		气	引至 40m 排气筒 G10 排放	
		食堂油烟	食堂油烟收集并通过静电除油	设施处理后引至 40m 排气筒 G15、G16 排放
	1	般固废暂存间	设置在厂房二北面,占地面积	约 43m ²
	危	险废物暂存间	设置在厂房二北面,占地面积	l约 42.5m ²
	(]	1)仓库设置围	堰, 防止泄漏物外溢, 配备泄	出漏吸附砂和收集桶。车间、危废间保持通风,防
风险	止	世漏物积聚。)	内防止消防废水外溢,在外排雨	F水口设置截止阀 (并辅助堵气袋、截止阀、砂包
控制	等:	昔施),使用均	也下车库收集事故废水,地下	车库做好防渗措施。
措施	(2	2) 危险废物暂	存间: 危险废物暂存间设置围]堰,做好防渗措施。
	(3	3)废气处理设	施:加强废气处理设施的维护	、监控。

3.1.5 主要生产设备

项目主要生产设备详见下表。

表 3.1-7 项目主要生产设备一览表

主要生产	±* ⊨	工艺	生产设备名称	单位	数量	设施参数		
单元	楼层	工乙	生厂区备名 你	学 位		参数名称	设计值	计量单位
		开料	带锯	台	1	功率	4	kw
		开料	截料锯	台	5	功率	7.5	kw
		开料	下轴纵锯机	台	5	功率	17	kw
		压刨	平刨	台	2	功率	3	kw
		压刨	双面刨	台	2	功率	21	kw
		压刨	四面刨	台	1	功率	28	kw
		开料	梳齿机	台	1	功率	10	kw
		开料	齿接机	台	1	功率	7.8	kw
		开料	推台锯	台	2	功率	3	kw
		修边	直线修边机	台	2	功率	7	kw
		拼板	摩天轮拼板机	台	4	功率	1.5	kw
		拼板	模块四面拼板机	台	1	功率	8.5	kw
		砂光	定厚砂光机	台	2	功率	45	kw
		砂光	刨砂机	台	1	功率	50	kw
厂房二	一层	砂光	砂光机	台	1	功率	41	kw
		辅助设备	空压机	台	2	功率	36.5	kw
		五金开料	锯床	台	1	功率	7	kw
		五金开料	开料机	台	2	功率	3	kw
		五金铣削	铣床	台	2	功率	3.5	kw
		五金钻孔	钻床	台	1	功率	2	kw
		五金钻孔	钻孔攻丝机	台	3	功率	1.5	kw
		五金冲压	冲床	台	2	功率	3.5	kw
		五金拉丝	拉丝机	台	1	功率	20	kw
		五金辅助设备	砂轮机(磨钻头用)	台	1	功率	0.5	kw
		五金车削	加工中心	台	2	功率	30	kw
		五金车削	车床	台	2	功率	15	kw
		五金线切割	线切割机	台	4	功率	3.5	kw
		五金焊接	焊机	台	5	功率	2	kw
		冷压	冷压机	台	2	功率	5.5	kw

主要生产	₩ 🗆	T#	—————————————————————————————————————	* *	粉目	7	设施参数	
单元	楼层	工艺	生产设备名称	単位	数量	参数名称	设计值	计量单位
		砂光	窜动砂带机	台	2	功率	4	kw
		锣制	立式单轴锣机	台	5	功率	4	kw
		车削	加工中心	台	5	功率	29.5	kw
		锣制	地锣	台	5	功率	3	kw
		车削	底贯机	台	1	功率	3	kw
		锣制	吊锣	台	5	功率	3	kw
		切削	仿型机	台	1	功率	44	kw
		砂光	砂光机	台	2	功率	25/60	kw
		砂光	砂带机	台	2	功率	2.2	kw
		砂光	气鼓砂光机	台	2	功率	2.2	kw
		车削	数控斜接机	台	1	功率	23.5	kw
		车削	数控车床	台	1	功率	6.7	kw
		出榫	数控出榫机	台	2	功率	5.5	kw
	二层	出榫	数控榫头机	台	2	功率	15	kw
		榫槽	数控榫槽机	台	2	功率	30.4	kw
		榫槽	榫眼机	台	2	功率	9.5	kw
		榫槽	数控燕尾榫机	台	2	功率	5.2	kw
		车削	数控加工中心	台	1	功率	54	kw
		车削	铣型机	台	1	功率	29.2	kw
		车削	四轴数控	台	1	功率	6.7	kw
		钻孔	台钻	台	10	功率	0.55	kw
		铣削	木工铣床	台	2	功率	9	kw
		开料	推台锯	台	6	功率	6.6	kw
		出榫	出榫机	台	5	功率	9.2	kw
		车削	小五轴加工中心	台	2	功率	15	kw
		出榫	斜榫机	台	3	功率	11.6	kw
		砂光	圆棒单砂机	台	1	功率	2.2	kw
	三层	木磨	手磨机	台	10	功率	0.71	kw
		油磨	手磨机	台	6	功率	0.71	kw
		调漆	调漆房	个	1	体积	14	m³
		喷涂	底漆房	个	1	体积	184.32	m³
		喷涂	底漆房喷枪	支	1	流量	130	g/min
		除漆雾	底漆房水帘柜	台	1	循环水量	6	m ³h
		W T (+ +n++)	 		1	体积	504	m³
		烘干(电加热)	底漆烘干房	个	1	工作温度	35	°C
		喷涂	面漆房	个	1	体积	138.24	m³
		喷涂	面漆房喷枪	支	1	流量	100	g/min
	四层	除漆雾	面漆房水帘柜	台	1	循环水量	5	m ³h
		WT (Hinth)	五冰州 工户		1	体积	476	m³
		烘干(电加热)	面漆烘干房	个	1	工作温度	35	°C
		喷涂、固化	UV 底漆喷涂线	条	1	体积	403.2	m³
			喷漆区	个	1	体积	157	m³
		#	流平区	个	1	体积	215	m³
		其中	固化区	个	1	体积	31.2	m³
			喷枪	支	4	流量	100	g/min
		磨沙 田 ル	III 高冰時込み	Ø	1	体积	403.2	m³
		喷涂、固化	UV 面漆喷涂线	条	1	固化温度	30~38	°C

主要生产	tok I		AL TANK BY BATE	36.0	W. =	ì	殳施参数	
单元	楼层	工艺	生产设备名称	単位	数量	参数名称		计量单位
			喷漆区	个	1	体积	157	m³
		其中	流平区	个	1	体积	215	m³
		共宁	固化区	个	1	体积	31.2	m³
			喷枪	支	4	流量	100	g/min
		开料	带锯	台	1	功率	3	kw
		开料	平刨	台	1	功率	3	kw
		开料	推台锯	台	1	功率	6.6	kw
		开料	台式钻床	台	1	功率	0.55	kw
		开料	台锣	台	1	功率	3	kw
		裁皮	切割机	台	1	功率	8	kw
		裁皮	截断机	台	3	功率	3	kw
		填充羽绒	搅拌储棉箱	台	1	功率	2.2	kw
		填充海绵	吸棉充棉机	台	1	功率	2.2	kw
		车皮	衣车	台	14	功率	0.5	kw
		车皮	平车	台	4	功率	0.5	kw
	五层	车皮	同步车	台	14	功率	0.5	kw
		车皮	大线车	台	1	功率	0.6	kw
		车皮	锁边机	台	2	功率	0.4	kw
		车皮	双针大绒机	台	1	功率	0.4	kw
		车皮	平板缝纫机	台	1	功率	0.5	kw
		车皮	平缝双针机	台	1	功率	0.6	kw
		皮革检验	测皮机	台	1	功率	5	kw
		布匹检验	量布机	台	1	功率	0.75	kw
		冲孔	真皮冲孔机	台	1	功率	2	kw
		车皮	电脑车	台	1	功率	0.5	kw
		车皮	高周波机	台	1	功率	5	kw
		铲皮	铲皮机	台	1	功率	4	kw
		开料	带锯	台	1	功率	4	kw
		开料	截料锯	台	5	功率	7.5	kw
		开料	下轴纵锯机	台	5	功率	17	kw
		压刨	平刨	台	2	功率	3	kw
		压刨	双面刨	台	2	功率	21	kw
	_	压刨	四面刨	台	1	功率	28	kw
	_	开料	梳齿机	台	1	功率	10	kw
		开料	齿接机	台	1	功率	7.8	kw
	_	开料	推台锯	台	2	功率	3	kw
厂房三	一层	修边	直线修边机	台	2	功率	7	kw
/ //1	14	拼板	摩天轮拼板机	台	4	功率	1.5	kw
	_	拼板	模块四面拼板机	台	1	功率	8.5	kw
		砂光	定厚砂光机	台	2	功率	45	kw
		砂光	刨砂机	台	1	功率	50	kw
		砂光	砂光机	台	1	功率	41	kw
		辅助设备	空压机	台	2	功率	36.5	kw
		五金开料	锯床	台	1	功率	7	kw
		五金开料	开料机	台	2	功率	3	kw
		五金铣削	铣床	台	2	功率	3.5	kw
		五金钻孔	钻床	台	1	功率	2	kw

主要生产	₩=	工艺	生产设备名称	単位	数量	Ì	设施参数	
单元	楼层	工乙	生厂区备名例	平位	数 里	参数名称	设计值	计量单位
		五金钻孔	钻孔攻丝机	台	3	功率	1.5	kw
		五金冲压	冲床	台	2	功率	3.5	kw
		五金拉丝	拉丝机	台	1	功率	20	kw
		五金辅助设备	砂轮机(磨钻头用)	台	1	功率	0.5	kw
		五金打磨	湿式一体抛光机	台	1	功率	4.5	kw
		五金车削	CNC	台	2	功率	30/15	kw
		五金车削	车床	台	2	功率	15	kw
		五金线切割	线切割机	台	4	功率	3.5	kw
		五金焊接	焊机	台	5	功率	2	kw
		冷压	冷压机	台	2	功率	5.5	kw
		砂光	窜动砂带机	台	2	功率	4	kw
		锣制	立式单轴锣机	台	5	功率	4	kw
		车削	加工中心	台	4	功率	29.5	kw
		锣制	地锣	台	5	功率	3	kw
		车削	底贯机	台	1	功率	3	kw
		锣制	吊锣	台	5	功率	3	kw
		切削	仿型机	台	1	功率	44	kw
		砂光	砂光机	台	2	功率	25/60	kw
		砂光	砂带机	台	2	功率	2.2	kw
		砂光	气鼓砂光机	台	2	功率	2.2	kw
		车削	数控斜接机	台	1	功率	23.5	kw
		车削	数控车床	台	1	功率	6.7	kw
		出榫	数控出榫机	台	2	功率	5.5	kw
	二层	出榫	数控榫头机	台	2	功率	15	kw
		榫槽	数控榫槽机	台	2	功率	30.4	kw
		榫槽	榫眼机	台	2	功率	9.5	kw
		榫槽	数控燕尾榫机	台	2	功率	5.2	kw
		车削	数控加工中心	台	1	功率	54	kw
		车削	铣型机	台	1	功率	29.2	kw
		车削	四轴数控	台	1	功率	6.7	kw
		钻孔	台钻	台	10	功率	0.55	kw
		铣削	木工铣床	台	2	功率	9	kw
		开料	推台锯	台	6	功率	6.6	kw
		出榫	出榫机	台	5	功率	9.2	kw
		车削	小五轴加工中心	台	2	功率	15	kw
		出榫	斜榫机	台	3	功率	11.6	kw
		砂光	圆棒单砂机	台	1	功率	2.2	kw
	三层	木磨	手磨机	台	10	功率	0.71	kw
		油磨	手磨机	台	6	功率	0.71	kw
		调漆	底漆调漆房	个	1	体积	14	m³
		调漆	面漆调漆房	个	1	体积	14	m³
		喷涂	底漆房	个	2	体积	184.32	m³
	四层	喷涂	底漆房喷枪	支	3	流量	130	g/min
		除漆雾	底漆房水帘柜	台	2	循环水量	6	m ³h
		烘干	底漆烘干房	个	1	体积	896	m³
		喷涂	面漆房	个	3	工作温度体积	35 138.24	°C m³
	<u> </u>	ツ尓	山 (水)万	1 1		学尔	130.24	III

主要生产	INF I		at what he hads.	26.40	V# =	ì		
単元	楼层	工艺	生产设备名称	単位	数量	参数名称		计量单位
		喷涂	面漆房喷枪	支	3	流量	100	g/min
		除漆雾	面漆房水帘柜	台	3	循环水量	5	m ₹h
		₩ ₸	五冰卅十户	^	1	体积	1344	m³
		烘干	面漆烘干房	个	1	工作温度	35	°C
		开料	带锯	台	1	功率	3	kw
		开料	平刨	台	1	功率	3	kw
		开料	推台锯	台	1	功率	6.6	kw
		开料	台式钻床	台	1	功率	0.55	kw
		开料	台锣	台	1	功率	3	kw
		裁皮	切割机	台	1	功率	8	kw
		裁皮	截断机	台	3	功率	3	kw
		填充羽绒	搅拌储棉箱	台	1	功率	2.2	kw
		填充海绵	吸棉充棉机	台	1	功率	2.2	kw
		车皮	衣车	台	14	功率	0.5	kw
		车皮	平车	台	4	功率	0.5	kw
	五层	车皮	同步车	台	14	功率	0.5	kw
		车皮	大线车	台	1	功率	0.6	kw
		车皮	锁边机	台	2	功率	0.4	kw
		车皮	双针大绒机	台	1	功率	0.4	kw
		车皮	平板缝纫机	台	1	功率	0.5	kw
		车皮	平缝双针机	台	1	功率	0.6	kw
		皮革检验	测皮机	台	1	功率	5	kw
		布匹检验	量布机	台	1	功率	0.75	kw
		冲孔	真皮冲孔机	台	1	功率	2	kw
		车皮	电脑车	台	1	功率	0.5	kw
		车皮	高周波机	台	1	功率	5	kw
		铲皮	铲皮机	台	1	功率	4	kw
		五金开料	锯床	台	1	功率	7	kw
		五金开料	开料机	台	2	功率	3	kw
		五金铣削	铣床	台	2	功率	3.5	kw
		五金钻孔	钻床	台	1	功率	2	kw
		五金钻孔	钻孔攻丝机	台	3	功率	1.5	kw
	一层	五金冲压	冲床	台	2	功率	3.5	kw
	/4	五金拉丝	拉丝机	台	1	功率	20	kw
		五金辅助设备	砂轮机(磨钻头用)	台	1	功率	0.5	kw
		五金车削	CNC	台	2	功率	30/15	kw
厂房四		五金车削	车床	台	2	功率	15	kw
/ //1		五金线切割	线切割机	台	4	功率	3.5	kw
		五金焊接	焊机	台	5	功率	2	kw
		开料	带锯	台	1	功率	3	kw
		开料	平刨	台	1	功率	3	kw
		开料	推台锯	台	1	功率	6.6	kw
	二层	开料	台式钻床	台	1	功率	0.55	kw
	—/石	开料	台锣	台	1	功率	3	kw
		裁皮	切割机	台	1	功率	8	kw
		裁皮	截断机	台	1	功率	3	kw
		填充羽绒	搅拌储棉箱	台	1	功率	2.2	kw

主要生产	778 🗀		は、 さい な た たた	34 13-	冰	Ì	设施参数	
单元	楼层	工艺	生产设备名称	単位	数量	参数名称	设计值	计量单位
	•	填充海绵	吸棉充棉机	台	1	功率	2.2	kw
	•	车皮	衣车	台	2	功率	0.5	kw
		车皮	平车	台	4	功率	0.5	kw
		车皮	同步车	台	14	功率	0.5	kw
		车皮	大线车	台	1	功率	0.6	kw
		车皮	锁边机	台	2	功率	0.4	kw
		车皮	双针大绒机	台	1	功率	0.4	kw
		车皮	平板缝纫机	台	1	功率	0.5	kw
		车皮	平缝双针机	台	1	功率	0.6	kw
		皮革检验	测皮机	台	1	功率	5	kw
		布匹检验	量布机	台	1	功率	0.75	kw
		冲孔	真皮冲孔机	台	1	功率	2	kw
		开料	带锯	台	1	功率	3	kw
		开料	平刨	台	1	功率	3	kw
		开料	推台锯	台	1	功率	6.6	kw
		开料	台式钻床	台	1	功率	0.55	kw
		开料	台锣	台	1	功率	3	kw
		裁皮	切割机	台	1	功率	8	kw
		裁皮	截断机	台	1	功率	3	kw
		填充羽绒	搅拌储棉箱	台	1	功率	2.2	kw
		填充海绵	吸棉充棉机	台	1	功率	2.2	kw
	三层	车皮	衣车	台	2	功率	0.5	kw
	/4	车皮	平车	台	4	功率	0.5	kw
		车皮	同步车	台	14	功率	0.5	kw
		车皮	大线车	台	1	功率	0.6	kw
		车皮	锁边机	台	2	功率	0.4	kw
		车皮	双针大绒机	台	1	功率	0.4	kw
		车皮	平板缝纫机	台	1	功率	0.5	kw
		车皮	平缝双针机	台	1	功率	0.6	kw
		皮革检验	测皮机	台	1	功率	5	kw
		布匹检验	量布机	台	1	功率	0.75	kw
		冲孔	真皮冲孔机	台	1	功率	2	kw

3.1.6 主要原辅材料

项目生产过程中主要使用的原辅材料情况详见下表。

表 3.1-8 项目主要原辅材料一览表

序号	名 称	单位	年用量	最大储存量	形状	包装规格	备注
1	实木 (原木 板材料)	m^3	33000	1500	固体	散装堆放	密度 800kg/m³
1	实木 (木枋料)	m^3	500	150	固体	散装堆放	密度 800kg/m³
2	白乳胶	吨/年	9.828	1	固体	25kg/桶	拼板、压板

序号	名 称	单位	年用量	最大储存量	形状	包装规格	备注	
3	水性胶水	吨/年	11.876	1	固体	50kg/桶	贴绵、组装、拼板	
	油性底漆	吨/年	29.108	2	液体	20kg/桶		
	油性面漆	吨/年	20.741	2	液体	20kg/桶		
	油性漆稀释剂(清洗及	吨/年	4.985	0.8	液体	200kg/桶	7-lux V (+ III	
4	调配)	n+ /左	24.024	1	冰丛	1.51 /4-7	手动喷涂使用	
	固化剂	吨/年	24.924	1	液体	15kg/桶		
	油性漆稀释剂(擦拭用)	吨/年	1.000	0.8	液体	200kg/桶		
	小计	吨/年	80.757	/	/	/		
	UV 底漆	吨/年	55.197	2	液体	20kg/桶		
	UV 面漆	吨/年	41.623	2	液体	20kg/桶		
5	UV 漆稀释 剂	吨/年	4.841	0.8	液体	20kg/桶	自动喷涂使用	
	清洗剂(异 丙醇)	吨/年	1.000	0.2	液体	20kg/桶		
	小计	吨/年	102.661	/	/	/		
6	真皮	米/年	30000	5000	固体	/		
7	布料	米/年	145000	10000	固体	/	用于软装家具	
8	海绵	立方米/ 年	2500	500	固体	/	用] 扒农外兵	
9	焊丝	吨/年	5	1	固体	/	组装	
10	气泡膜	吨/年	45	2	固体	/	包装	
11	不锈钢钢材	吨/年	100	10	固体	/		
12	铜材	吨/年	150	10	固体	/		
13	铝材	吨/年	10	1	固体	/] 工並制件原材料	
14	铁材	吨/年	20	1	固体	/		
15	润滑油	吨/年	0.2	0.2	液体	200kg/桶	设备维护	

项目主要原辅材料理化性质见下表。

表 3.1-9 项目主要原辅材料理化性质一览表

序号	原辅材 料名称	原辅材料理化性质
1	油性底漆	项目使用的油性底漆为 PU 无色底漆,主要成分为醇酸树脂 40~60%、滑石粉 10~25%、硬脂酸锌粉 1~5%、二甲苯 10~15%、丙二醇甲醚醋酸酯 0~5%、乙酸丁酯 1~5%、环己酮 0~2%、助剂 0~5%等。油性底漆需与固化剂、稀释剂调配使用,调配后密度为1.01325g/cm³。调配比例为主漆:固化剂:稀释剂=1:0.5:0.1(质量比),根据检测报告,施工状态下已调配的油性底漆挥发性有机化合物含量约为 361g/L(折算 35.63%),其中二甲苯含量 6%
2	油性面漆	项目使用的油性面漆为 PU 有色面漆,主要成分为醇酸树脂 50~65%、二甲苯 10~20%、消光粉 1~6%、蜡粉 0~2%、丙二醇甲醚醋酸酯 0~15%等。油性面漆需与固化剂、稀释剂调配使用,调配后密度为 1.01325g/cm³。调配比例为主漆:固化剂:稀释剂=1:0.5:0.1(质量比),根据检测报告,施工状态下已调配的油性底漆挥发性有机化合物含量约

序	原辅材	后 4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
号	料名称	原辅材料理化性质
		为 403g/L(折算 39.77%),其中二甲苯含量 5%
		项目使用的 UV 底漆为 UV 清底漆,主要成分为环氧丙烯酸树脂 $70\sim80\%$ 、二丙二醇
3	UV 底漆	二丙烯酸酯 10~20%、光引发剂 4~8%等,密度按 1.3g/cm³ 计。根据检验报告,UV
		底漆(未调配)挥发性有机化合物含量约为 8g/L。UV 底漆需与稀释剂调配使用,调配比例为主漆:稀释剂=1:0.05(质量比)。
		而且使用的 IVV 底漆为 IVV 互面漆 土电电分为重核膨胀化 树脂 5~40% 重核膨胀化
		单体 5~85%、光引发剂 4~8%等,密度按 1.3g/cm³ 计。根据检验报告,UV 面漆(未
4	UV 面漆	调配)挥发性有机化合物含量约为 15g/L。UV 面漆需与稀释剂调配使用,调配比例为
		主漆:稀释剂=1:0.05(质量比)。
5	油性漆固	无色透明液体,主要成分为聚氨酯固化剂 45~60%、乙酸丁酯 13~20%、乙酸乙酯
5	化剂	15~20%、丙二醇甲醚醋酸酯 3~8%,密度为 1.02g/cm ³
6	油性漆稀	主要成分为丙二醇甲醚醋酸酯 45~55%、乙酸丁酯 45~55%,为无色透明液体,具有刺
U	释剂	激性气味, 密度为 0.852g/cm ³
7		为无色液体,具有刺激性气味,主要成分为乙酸丁酯 50%,乙酸乙酯 50%,挥发成分
,	释剂	占比 100%,密度为 0.93g/cm³
		白乳胶是一种特殊水基聚醋酸乙烯酯、单组分、高固含量、快干型胶粘剂,密度约为
		1.01g/cm³。由醋酸乙烯单体在引发剂作用下经聚合反应而制得,对木材、纸张、皮革、
		陶瓷、织物等极性材料具有较强的粘附力和良好的渗透性。该胶黏剂以水为分散剂,
8		VOC 含量很低,固含量高,常温固化,无需加热,且固化较快,粘接强度较高,固化
		后的胶层无色透明,具有布胶量少、环保、无毒无害、最终强度高、耐溶剂性及耐热 性优异、存放期限长等特点,是一种市场流行的环保型通用粘合剂。根据检测报告,
		性优并、存放期限で等特点,定一种中场流行的坏床至週用稍音剂。根据位侧报音, 白乳胶总 VOCs 含量为 28g/L
		主要成分为: 水性氯丁胶乳 25~35%、水性树脂 20~30%、去离子水 35~45%、其他辅
		料 5~8; 其他辅料主要包括抗氧化剂、金属氧化物、增粘剂(以树脂为主)等不易挥
9	水性胶水	发物质,VOCs 含量参考《印刷工业污染防治可行技术指南》(HJ1189-2020)中"水
		性胶粘剂"产污系数为 0.05tVOCs/t 胶粘剂
		异丙醇作为 UV 喷漆清洗剂使用。异丙醇(IPA),又名 2-丙醇,是一种有机化合物,
10	异丙醇	化学式是 C_3H_8O ,是正丙醇的同分异构体,为无色透明液体,有似乙醇和丙酮混合物
		的气味,可溶于水,也可溶于醇、醚、苯、氯仿等多数有机溶剂
久注,	正古 正会 上寸 IIV 。	今有羧酸基团(COOH) 具有一定的酸性 可与碱发生酸碱由和反应 同时醇酸树脂也具有羟基(OH)

备注: 醇酸树脂含有羧酸基团(-COOH),具有一定的酸性,可与碱发生酸碱中和反应。同时醇酸树脂也具有羟基(-OH)或醇基团,还具有一定的醇性,可与酸酐反应生成酯。MDI含有异氰酸酯基(-N=C=O),在合成树脂或涂料过程中,与涂料或树脂中的羟基起反应而固化。醇酸树脂本身不是聚氨酯,但醇酸树脂中的羟基可以和异氰酸根反应,从而得到聚氨酯。通过这种反应,可以制备出具有不同性能的聚氨酯树脂,广泛应用于涂料、胶粘剂、塑料等领域。根据《木器涂料中有害物质限量》(GB 18581-2020),涂料种类一般指施工状态下涂料种类,因此本项目使用的油性底漆、油性面漆属于聚氨酯类涂料

表 3.1-10 涉 VOCs 原辅材料标准符合性判定表

序号	名称	施工状态下 VOCs 含量		含量标	是否属于低 VOCs 原辅 料)**	是否符 合产品 标准	
1	油性底漆	361g/L;二甲 苯含量 6%	GB/T	420g/L	是	GB	VOC 含量: 600g/L 甲苯与二甲苯(含乙 苯)总和含量%: 20	是是
2	油性面漆	403g/L; 二甲 苯含量 5%	38597-202 0	420g/L	是	18581-2020	650g/L 甲苯与二甲苯(含乙 苯)总和含量%: 20	是 是
3	水性胶 水	50g/L	GB33372- 2020	50g/L	是	/	/	/

序号	名称	施工状态下 VOCs 含量	国家低挥 机化合物 准限	含量标	是否属于低 VOCs 原辅 料)**	是否符 合产品 标准	
4	白乳胶	28g/L	GB33372- 2020	50g/L	是	/	/	/
5	UV 底漆	68.48g/L	GB/T 38597-202 0	100g/L	是	GB 18581-2020	420g/L	是
6	UV 面漆	75.01g/L	GB/T 38597-202 0	100g/L	是	GB 18581-2020	420g/L	是
7	异丙醇 清洗剂	785.5g/L	GB 38508-202 0	100g/L	否	GB38508-20 20	VOC 含量: 900g/L	是
8	油性漆 稀释剂	852g/L	GB 38508-202 0	100g/L	否	GB38508-20 20	VOC 含量: 900g/L	是

根据上表可知,本项目使用的油性底漆、油性面漆、UV 底漆、UV 面漆等按相应比例调配后,最终在施工状态下 VOCs 含量满足《低挥发性有机化合物含量涂料产品技术要求》(GB/T 38597-2020)的相关要求,水性胶水和白乳胶无需调配即可使用,能够满足《胶粘剂挥发性有机化合物限量》(GB33372-2020)的相关要求,因此本项目使用的油性底漆、油性面漆、UV 底漆、UV 面漆和胶粘剂均属于低 VOCs 原辅料。项目使用的稀释剂(擦拭用)密度为 0.852g/cm ¾ 挥发性为 852g/L,异丙醇清洗剂溶液密度为 0.7855g/cm ¾ 挥发性为 785.5g/L,低于《清洗剂挥发性有机化合物含量限值》(GB 38508-2020)中表 1 有机溶剂清洗剂 VOC 含量≤900g/L 的限值要求,目前油性漆和 UV 漆喷枪一般使用有机溶剂进行擦拭、清理,暂无低 VOC 清洗剂替代,具有不可替代性。

3.1.7 涂料及胶粘剂用量核算

1、涂料用量核算

根据《佛山市家具制造业涉工业涂装建设项目环评文件编制技术参考指南》(试行), 企业可获得涂膜厚度、涂膜密度、涂料利用率、原涂料固体分、涂装面积等参数数据时, 可按以下公式核算涂料用量。

$$A=B\times C \div (E\times F) \times G$$

公式中: A——涂料的消耗量, g;

B——涂膜厚度, μm;

C——涂膜密度, g/cm³;

E——各涂装方法的涂料利用率,%:

F——原涂料固体分,%:

G——涂装面积, m^2 。

根据《佛山市家具制造业涉工业涂装建设项目环评文件编制技术参考指南(试行)》: 采用手动喷枪人工喷涂的,单位产品涂料附着率原则上不高于 50%,根据《家具行业污染治理实用技术指南》(广东省生态环境厅),采用机械手/机器人喷涂技术的单位产品涂料附着率原则上不高于 70%,采用往复式自动喷涂箱喷涂技术的单位产品涂料附着率原则上在 50~70%之间,采用静电喷涂技术的单位产品涂料附着率原则在 60~85%之间,采用辊涂/淋涂技术的单位产品涂料附着率原则上不高于 90%。

本项目自动喷涂线采用往复式喷涂技术,定制家具均为板式家具,工件规整,喷涂效率取**70%**。

本项目手动喷漆房采用人工空气喷涂,喷枪类型为 HVLP 喷枪,HVLP(High Volume Low Pressure,高流量低压力)喷漆工艺是一种由美国环保署(EPA)制定的环保喷涂标准,旨在通过低压力、高空气流量的方式提高涂料利用率并减少污染。HVLP 通过喷枪将大量低压空气(通常≤10 psi/0.7 bar)与涂料混合,形成细腻的雾化效果,从而实现均匀喷涂。与传统喷枪(雾化压力约 3.5 bar)相比,其低压力减少了漆雾反弹和过喷,同时高空气流量确保了涂料的有效传输。HVLP 喷枪的涂料利用效率必须高于 65%,喷嘴处的空气压力不超过 10 psi(约 0.7 bar)。HVLP 喷涂效率取 65%。

项目涂料量估算如下表所示。

表 3.1-11 施工状态下涂料用量核算一览表

喷涂产品	油漆种类	喷涂 次数	单次涂装面积(m²/a)	单层涂膜 厚度 (μm)	喷漆设施	涂料 利用 率%	固体 分%	干膜密度 (g/cm³)	施工状态下 涂料消耗量 (t/a)
套房家具、 装饰材料、	己调配油 性底漆	2	811945	12	厂房二手动 喷漆房、厂房	65	64.37	1	46.572
全屋定制产 品异形部件	己调配油 性面漆	2	811945	8	三手动喷漆 房	65	60.23	1	33.185
全屋定制产	己调配 UV 底漆	2	1000000	16	厂房二自动	70	94.65	1.20	57.957
品板件	己调配 UV 面漆	2	1000000	12	喷漆线	70	94.14	1.20	43.704
								油性底漆	46.572
			合计					油性面漆	33.185
			ΉI					UV 底漆	57.957
								UV 面漆	43.704

企业自行调漆,根据上表计算结果,结合项目使用涂料与固化剂、稀释剂的配比,

计算得项目施工状态下各涂料理论使用量,项目各类涂料及其成分的申报量如下。

涂料种类 施工状态下涂料申报量(t/a) 调配成分 调配比例 原涂料消耗量 油性底漆 (主漆) 29.108 已调配油性 油性固化剂 0.5 46.572 14.554 底漆 油性稀释剂 2.911 0.1 油性面漆(主漆) 20.741 1 已调配油性 33.185 油性固化剂 0.5 10.370 面漆 油性稀释剂 0.1 2.074 己调配UV底 UV 底漆(底漆) 1 55.197 57.957 漆 UV 稀释剂 0.05 2.760 己调配UV面 UV 面漆(主漆) 1 41.623 43.704 漆 UV 稀释剂 2.081 0.05 油性底漆 / 29.108 油性面漆 / 20.741 油性稀释剂 / 4.985 油性固化剂 合计 / 24.924 181.418 UV 底漆 55.197 UV 面漆 / 41.623 UV 稀释剂 4.841

表 3.1-12 原涂料消耗量核算一览表

2、胶粘剂用量核算

本项目胶粘剂的主要用于拼板、冷压、贴绵工序,主要用到白乳胶和水性胶水,根据《佛山市家具制造业涉工业涂装建设项目环评文件编制技术参考指南(试行)》,胶 粘剂用量可按以下公式进行核算。

$A=H\times G$

公式中: A——胶粘剂的消耗量, g;

H——单位面积胶粘剂的消耗量, g/m²;

G——涂胶面积, m^2 。

根据《佛山市家具制造业涉工业涂装建设项目环评文件编制技术参考指南(试行)》,采用手动喷枪人工喷涂的,单位产品涂料附着率原则上不高于50%,采用辊涂/淋涂技术的单位产品涂料附着率原则上不高于90%。本项目拼板、冷压工序采用刷涂上胶,白乳胶附着率按90%计,贴绵工序采用喷胶上胶,水性胶水附着率按50%计。

表 3.1-13 项目胶粘剂使用量核算表

序	丁序	贴合面积	ます米型	单位面积原胶粘	胶粘剂消	涂胶方	胶粘剂附着	胶粘剂理论
号	工庁	(m^2/a)	胶水类型	剂使用量(g/m²)	耗量(t/a)	式	率%	使用量(t/a)

7	字	工序	贴合面积	胶水类型	单位面积原胶粘	胶粘剂消	涂胶方	胶粘剂附着	胶粘剂理论
Ţ	号	· L L C (n	(m^2/a)	双小头鱼	剂使用量(g/m²)	耗量(t/a)	式	率%	使用量(t/a)
	1	拼板、冷压	49140.90	白乳胶	180	8.845	刷涂	90	9.828
	2	贴绵	32990	水性胶水	180	5.938	喷涂	50	11.876

注:根据项目产品尺寸,项目需使用冷压、拼板板材的家具主要为茶台、床、床头柜、电视柜、衣柜、沙发、鞋柜、客厅柜,其单件贴合面积分别为 1.530m²、3.948m²、0.200m²、0.720m²、1.747m²、0.260m²、1.568m²、1.236m²,年加工量分别为 3000 件、5500 件、11000 件、4000 件、3500 件、7000 件、3500 件、3500 件、900 件、4000 件、5500 件、7000 件、3500 件、7000 件、700

每件沙发需贴合的面积为 $3.77m^2$,床需贴合的面积为 $1.2m^2$,沙发年加工量为 7000 件,床年加工量 5500 件,则贴绵工序贴合面积为 $32990m^2$ 。

3、清洗剂用量核算

为了防止喷枪内物料干化后堵塞喷枪,影响作业质量,每天作业结束后需使用稀释剂对喷枪进行擦拭和清洗,清洗后稀释剂用于调漆,因此不再重复计算清洗部分的用量,用于擦拭油性漆喷枪的稀释剂的量为 1t/a,用于擦拭 UV 漆喷枪的清洗剂(异丙醇)的量为 1t/a,擦拭用的稀释剂和清洗剂全部挥发。

3.1.8 涂料用量与涂装设备产能匹配性

①UV 喷涂线产能利用率分析

UV 喷涂线工序主要分为喷漆及固化,喷漆后工件进入流平固化段加工,流平固化 段为自动流水线,喷漆后工件在流平固化段按一定速度前进。油性喷涂线产能关键在喷 漆喷枪喷涂能力,对应每日最大涂料消耗能力估算如下。

表 3.1-14 UV 漆喷涂线施工状态下喷漆涂料产能核算一览表

生产线	油漆种类	单支喷枪最 大供漆流速 (kg/min)	啖粒	最大有效喷涂 时间*(h/d)	日最大可 喷涂量 (kg/d)	本项目平 均油漆用 量(kg/d)	本项目最小喷枪喷 漆时间(min/d)
厂房二 UV	UV 底漆	0.1	4	8	192	176	439
漆喷涂线	UV 面漆	0.1	4	8	192	132	331

备注:因工件上下件时需调试,生产线不进行喷漆,因此最大有效喷漆时间为8h/d。

UV喷涂线可满足本项目产能需求。

表 3.1-15 UV 漆喷涂线废气最大产生速率核算表

油漆种类	单只喷枪流速	喷枪数	油漆最大用	VOC 含	固体	涂料利用	VOCs 产生	颗粒物产生
一种探查	(kg/min)	量	量(kg/h)	量%	分%	率%	速率(kg/h)	速率 (kg/h)
UV 底漆	0.1	4	24	5.35	94.65	70	1.284	6.815
UV 面漆	0.1	4	24	5.86	94.14	70	1.407	6.778

③手工喷涂产能利用率分析

手工喷涂主要喷涂油性漆,喷涂方式为人工空气喷涂,手工喷涂主要分为喷漆及烘 干两部分,喷漆与烘干工序可同时进行,对应每日最大涂料消耗能力估算如下。

厂房	生产线	油漆种类	单只喷枪最大 流速(kg/min)	喷枪数量	喷涂时间 (h/d)	日最大可喷 涂量(kg/d)	本项目平均油漆用 量(kg/d)
厂房	1#底漆房	油性底漆	0.15	1	5	45	35.282
	1#面漆房	油性面漆	0.1	1	5	30	25.140
	1#底漆房	油性底漆	0.15	2	5	90	70.564
一户	2#底漆房	油性底漆	0.15	1	5	45	35.282
厂房	1#面漆房	油性面漆	0.1	1	5	30	25.140
	2#面漆房	油性面漆	0.1	1	5	30	25.140
	3#面漆房	油性面漆	0.1	1	5	30	25.140

表 3.1-16 手工喷涂施工状态下喷漆涂料产能核算一览表

手动喷漆工序年运行时间为 330d,底漆、面漆可同时进行喷漆。手动喷涂属间歇式喷漆,需搬运工件,每小时有效喷涂时间约为 30min,有效喷涂时间为 5h/d,手动喷漆设备均可满足本项目产能需求。

厂房	油漆种类	单只喷枪流 速(kg/min)	喷枪 数量	油漆最 大用量 *(kg/h)	VOC 含 量%	二甲 苯含 量%	固体 分%	涂料 利用 率%	VOCs 产生速 率(kg/h)	二甲苯产 生速率 (kg/h)	颗粒物 产生速 率(kg/h)
厂房二	油性底漆	0.15	1	4.5	35.63	6	64.37	65	1.603	0.270	1.014
) 厉一	油性面漆	0.1	1	3	39.77	5	60.23	65	1.193	0.150	0.632
厂房三	油性底漆	0.15	3	13.5	35.63	6	64.37	65	4.810	0.810	3.042
)	油性面漆	0.1	3	9	39.77	5	60.23	65	3.580	0.450	1.897

表 3.1-17 油性漆喷涂线废气最大产生速率核算表

3.1.9 项目能源消耗

项目用电由市政电网供电,主要用于厂区生产设备及职工日常生活用电,项目不设备用发电机。综上,项目能源结构详见下表。

能源	能源 单位 年用量		用途	备注		
电能	万千瓦时/年	300	生产、办公	市政供电		
天然气	万 m³/年	10.3125	催化燃烧装置	管道运输		

表 3.1-18 项目能源结构一览表

3.1.10 劳动定员及工作制度

1、劳动定员:本项目员工人数为800人,厂区内设有食堂、宿舍,其中600人在

厂内食宿。

2、工作制度: 每天工作 10 小时(8:00~18:00), 年工作 330 天。

3.2 生产工艺及影响因素分析

3.2.1 生产工艺流程

项目主要从事套房家具、装饰材料和全屋定制产品的加工生产,具体生产工艺流程如下。

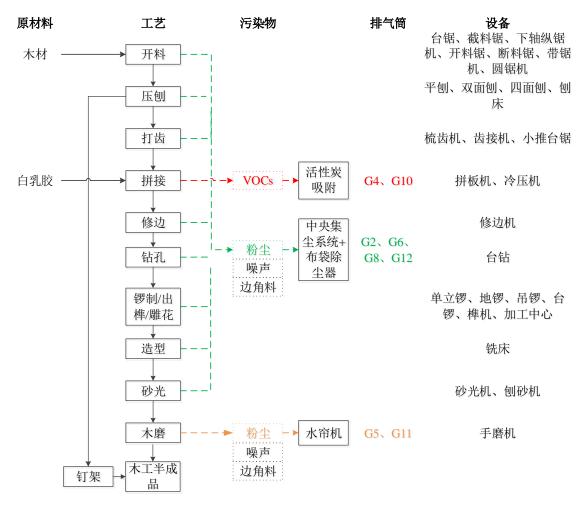


图 3.2-1 项目木工半成品生产工艺流程图

工艺流程说明:

开料:

根据客户要求,利用台锯等将外购的木材裁切成不同的规格,此过程会产生一定量的木边角料、木屑粉尘和设备运行噪声;

压刨:

使用刨机等对木材表面的凹凸不平进行修整,以达到光滑平整的效果。可去除木材

表面的污渍和不良状况,同时增加木材的使用寿命,此过程会产生一定量的木边角料、 木屑粉尘和设备运行噪声;

打齿:

利用梳齿机等把截好的木材铣齿,此过程会产生一定量的木边角料、木屑粉尘和设备运行噪声:

拼板:

如有客户需求用加厚的板材,则采用拼板机对板材进行涂白乳胶和拼板加工,此过程会产生胶水废气、设备运行噪声;

修边:

裁切好的板材可能存在毛刺,通过修边机对其进行再次修饰,使得整体性和美观度 更佳,此过程会产生一定量的木边角料、木屑粉尘和设备运行噪声。

钻孔、锣制、出榫、雕花、造型:

对有加工需求的木材进行钻孔、锣制、出榫、雕花、造型等加工,此过程会产生一定量的木边角料、木屑粉尘和设备运行噪声。

砂光:

将木材表面的加工痕迹、毛刺、污迹等加工光滑,此过程会产生一定量的木边角料、木屑粉尘和设备运行噪声。

木磨:

在打磨房使用手磨机对需喷涂的板材进行表面打磨,让板材表面变得粗糙,有助于油漆更好地附着在板材表面上,喷底漆前需对工件进行木磨处理,此过程会产生粉尘、设备运行噪声。木磨粉尘经"水帘柜"处理后引至楼顶排气筒 G5、G11 排放,该废气治理设施运行过程主要污染为水帘柜废水和沉渣。

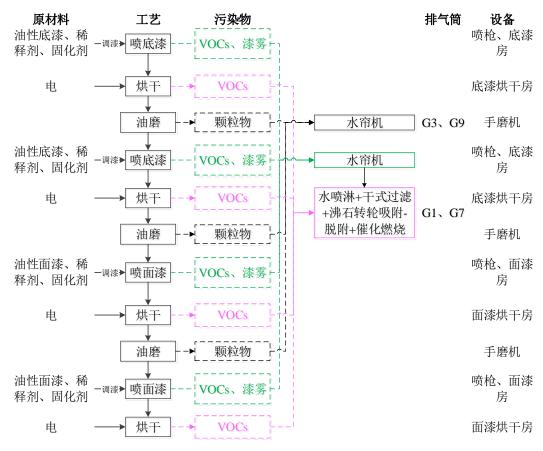


图 3.2-2 项目手动喷涂工艺流程图

项目手动喷涂工艺流程说明:

调漆:

项目涂料的储存和调配在调漆房完成,在喷油性漆前,先打开油漆桶,按比例加入稀释剂和固化剂,经充分搅拌均匀后倒进喷枪的喷壶中。调漆过程产生的废气经负压收集后直接引至各自生产线配套的处理设施进行处理,调漆过程会产生少量的有机废气和废包装桶。

油磨:

为了让面漆更好地附着于木件表面,需对工件进行油磨处理,即使用手磨机对其涂层表面的粗颗粒物和杂质进行打磨,此过程会产生颗粒物、设备运行噪声。油磨颗粒物经"水帘柜"处理后引至排气筒 G3、G9 排放,该废气治理设施运行过程主要污染为水帘柜废水和漆渣。

喷涂:

项目内设有手工喷漆房,将需要喷漆的工件置于喷漆室中,人工使用喷枪对工件进行喷涂。喷枪利用气压将涂料雾化喷出,从而使涂料均匀地涂覆在工件表面,均使用油性涂料,木磨后喷涂底漆,经过电加热烘干(烘干温度约35℃)后送入打磨房,在打磨

房进行一次油磨工序,然后进行二次喷涂底漆、第二次油磨、一次喷涂面漆、第三次油磨、二次喷涂面漆,经过电加热烘干(烘干温度约 35℃)后即完成喷涂工序。喷漆涂装对漆房环境要求较高,要求无尘且通风良好,采用封闭式漆房,空气经送风系统除尘后进入漆房。喷漆工序会产生有机废气和漆雾,烘干工序会产生有机废气,面漆废气经密闭正压收集,调漆、底漆、烘干废气经密闭负压收集,喷漆废气经"水帘柜"除漆雾后与烘干废气一并经"两级水喷淋+干式过滤+沸石转轮吸附-脱附+催化燃烧"处理后通过排气筒 G1、G7 排放,催化燃烧装置使用天然气辅助加热,加热方式为直接加热,该废气治理设施运行过程主要污染为水帘柜废水、喷淋废水、漆渣、废滤网、废催化剂和设备运行噪声。

HVLP(高流量低压)喷漆工艺简介:

HVLP(High Volume Low Pressure, 高流量低压力)喷漆工艺是一种由美国环保署(EPA)制定的环保喷涂标准,旨在通过低压力、高空气流量的方式提高涂料利用率并减少污染。HVLP 通过喷枪将大量低压空气(通常≤10psi/0.7bar)与涂料混合,形成细腻的雾化效果,从而实现均匀喷涂。与传统喷枪(雾化压力约 3.5bar)相比,其低压力减少了漆雾反弹和过喷,同时高空气流量确保了涂料的有效传输。HVLP 喷枪的涂料利用效率必须高于 65%,喷嘴处的空气压力不超过 10psi(约 0.7bar)。传统喷涂的传递效率(即油漆利用率)大约在 30%左右,而另外 70%左右的喷涂溶剂随着飞雾散布到周围环境当中,大量浪费油漆或涂料,不仅增加经济成本,而且 VOC 等有毒有害物质排放非常大,严重污染大气和水体环境,同时损害施工者健康。对于经常要变换施工点的作业来说,传统空气喷涂中使用的空压机体积大,重量重,设备的运输也会造成很多不方便的情况,同时耗费人工。而 HVLP 喷枪或喷涂设备,能够极大减少飞雾及反弹(过喷),降低油漆以及溶剂排放量,大大节约喷涂用量,同时能够保持工作环境的整洁,保护大气环境和施工人员身体健康。

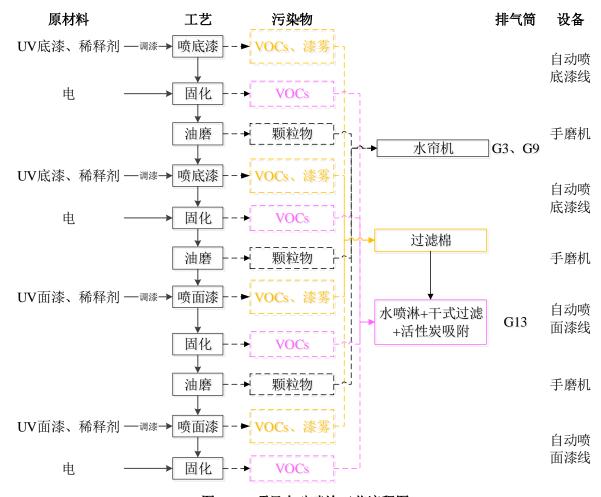


图 3.2-2 项目自动喷涂工艺流程图

项目自动喷涂工艺流程说明:

项目 UV 漆采用往复式喷涂技术。喷漆前,工人在喷涂线调漆区中调配好 UV 漆。板材首先放入隧道入口,然后进入喷涂段,喷枪会以往复运动的方式将涂料喷洒在待喷涂的物体上,然后经过流平和固化后送入打磨房,在打磨房使用手磨机对其涂层表面的粗颗粒物和杂质进行打磨,使其表面获得平整,经二次喷底漆和二次油磨后再上线喷涂面漆,喷涂面漆的所需时间和流程均与喷涂底漆流程一致,主要区别为喷涂涂料不同,下线后即得喷涂成品。

UV 漆(紫外线光固化涂料)的固化机理主要是基于光化学反应,这一过程可以概述为以下几个关键步骤:

光引发阶段: UV 漆中含有光引发剂,当涂料暴露在紫外线(UV)光源下时,光引发剂吸收紫外线的辐射能量,从基态转变为激发态。这一过程中,光引发剂的分子外层电子发生跃迁,形成自由基或阳离子。

链增长反应阶段:处于激发态的光引发剂进一步反应,引发树脂中的不饱和基团断

裂,产生新的自由基或开始阳离子聚合反应。这些活性中心接着与周围的其他分子反应,形成聚合链,随着链的增长,分子间开始交联,逐步构建起三维网络结构。这个阶段是涂料快速固化并形成固体膜的主要过程。

交联反应:随着链的增长,分子间的交联点增多,形成了一个密集的网状结构,这是涂料固化成膜的基础。这一阶段中,树脂和其他反应性单体通过自由基或阳离子的连锁反应不断连接在一起,增强了涂膜的物理性能,如硬度、耐化学品性和抗磨损性。

链终止阶段:随着链增长的进行,链自由基会越来越少,最终通过偶合或歧化反应等方式停止增长,完成链终止,固化过程至此结束。这确保了涂膜的稳定性和固化过程的完成。

UV 喷涂过程会产生喷漆废气(包括调漆、喷漆、流平、UV 光固化、喷枪清洗等工序废气)、废抹布及手套、设备运行噪声; UV 喷涂线设置于单独房间内,一般情况下出入口均为关闭状态,喷涂线由腔体、供气系统、排气系统和漆雾处理系统、空气净化系统等组成,工作时具有通风、空气净化、漆雾、废气处理等功能。喷涂段通风方式采用管道收集。在工作状态下,送风机、排风机启动。喷漆废气敬"过滤棉+水喷淋+干式过滤器+活性炭吸附装置"处理后,通过排气筒 G13 排放。此过程会产生喷淋塔废水、漆渣、废过滤棉和设备运行噪声。

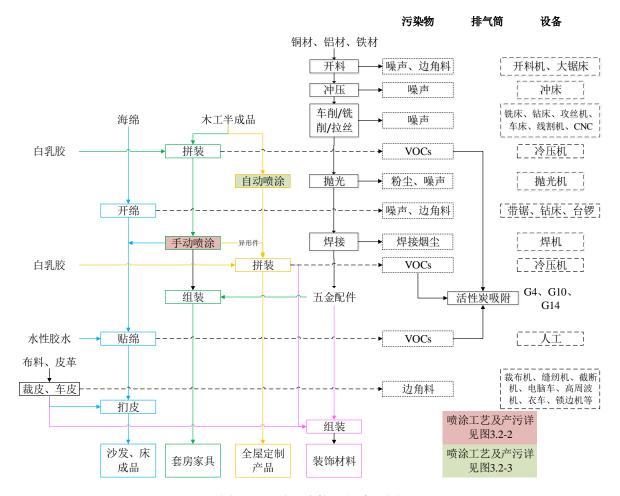


图 3.2-3 项目总装工艺流程图

组装:加工后的半成品组装为成品。

打包:成品经打包机打包后入库。

其他产污环节说明:

- (1)为了防止喷枪内物料干化后堵塞喷枪,影响作业质量,每天作业结束后需使用油性漆稀释剂对油性漆喷枪进行擦拭和清洗,清洗用的油性漆稀释剂回用于调漆,擦拭用的稀释剂全部挥发,会产生有机废气; UV 喷涂线喷枪使用异丙醇擦拭,异丙醇清洗剂全部挥发,会产生有机废气。
- (2) 生产设备需定期维护保养,此过程会产生废润滑油和废润滑油桶、废手套和废抹布。

3.2.2 影响因素分析

3.2.2.1废水

1、工业生产废水

喷漆废气治理设施中喷淋塔装置废水、水帘柜废水经沉淀清渣处理后循环使用,定期更换,交由顺德区内有相应处理能力的工业废水处理单位处理;打磨废气(包括木磨、油磨、五金抛光)治理设施水帘柜废水经沉淀清渣处理后循环使用,定期更换,交由区内有相应处理能力的工业废水处理单位处理。

2、生活污水

项目内设食宿,员工生活、办公过程中会产生生活污水,污水主要污染物为 COD_{Cr} 、 BOD_5 、氨氮、SS、LAS、总氮、总磷等。

3.2.2.2废气

本项目产生的废气污染物包括木工粉尘、打磨粉尘、喷漆废气、胶水废气、五金抛光废气、天然气燃烧废气、食堂油烟。

1、喷漆废气

项目喷漆(及调漆、流平、烘干、固化 、喷枪擦拭)过程中会产生喷漆废气,主要污染物为总 VOCs、二甲苯、颗粒物(漆雾)和臭气浓度。

2、木工粉尘

项目对板材进行开料、钻孔等木加工,加工过程中会产生一定量的木屑粉尘,其主要污染因子为颗粒物。

3、打磨粉尘

项目使用手磨机对需喷涂的板材进行表面打磨,让板材表面变得粗糙,有助于油漆更好地附着在板材表面上,称为木磨工序,此过程会产生少量粉尘;喷底漆烘干/固化后需要对漆面进行打磨,有利于提升面漆的附着力,称为油磨工序,此过程会产生少量粉尘;以上污染物统称为打磨粉尘,主要污染物为颗粒物。

4、胶水废气

项目贴绵、拼板与封边工序使用水性胶水、白乳胶,胶水使用过程中会产生少量的有机废气和臭气,其主要污染因子为总 VOCs 和臭气浓度。

5、五金抛光废气

项目五金抛光打磨过程中会产生少量的粉尘,其主要污染因子为颗粒物。

6、天然气燃烧废气

项目催化燃烧装置使用天然气辅助燃烧,会产生燃烧废气,其主要污染因子为二氧 化硫、氮氧化物、颗粒物、烟气黑度。

7、食堂油烟

项目食堂用电,烹饪过程会产生油烟,其主要污染因子为油烟颗粒物。

3.2.2.3噪声

本项目产生的噪声主要来自生产过程中主体工程设备运转时产生的噪声,以及辅助 设备如空压机、风机运转时产生的噪声。

3.2.2.4固废

1、工业固废

生产过程工业固废主要有:木边角料、废布袋、布袋收集木工灰尘、布料及真皮边角料、金属边角料、一般原料废包装袋、废化学品包装桶、废抹布手套、废漆渣、废活性炭、废过滤棉、废润滑油和废润滑油桶、废催化剂、废沸石等。

2、生活垃圾

项目员工办公产生的生活垃圾和员工饭堂就餐产生的餐厨垃圾。

3.2.2.5营运期污染源分析

根据上述工程分析,项目污染源识别详见下表。

表 3.2-1 项目产污环节一览表

序 号		类别		产污环节	主要污染因子
1		水帘废力	火	木磨、油磨、五金抛光废气治理水帘柜运 行	pH、COD _{Cr} 、SS
2	废	水帘废水	火	喷漆废气治理设施运行	pH、COD _{Cr} 、SS
3	水	喷淋塔废	水	项	pH、COD _{Cr} 、SS
4		生活污力	火	员工办公、生活、饭堂就餐	pH、COD _{Cr} 、BOD₅、氨氮、SS、 LAS、总氮、总磷
5		喷漆废气		喷漆、调漆、流平、烘干/光固化及喷枪清 洗擦拭工序	总 VOCs、二甲苯、颗粒物(漆雾) 和臭气浓度
6		木屑粉尘	<u>£</u>	木工工序	颗粒物
7	废气	打磨粉尘、五金 抛光粉尘		木磨、油磨、五金抛光工序	颗粒物
8	. (胶水废	ij	拼板、冷压、贴绵工序	总 VOCs、臭气浓度
9		燃烧废气		催化燃烧装置-天然气燃烧	二氧化硫、氮氧化物、颗粒物、 烟气黑度
10		食堂油烟		烹饪	油烟
11	固废		工业 废	木加工工序、机加工工序	木边角料、布袋收集木工粉尘、 地面清扫粉尘、喷淋沉渣(金属 粉尘)

序号		类	别	产污环节	主要污染因子		
12				木加工废气治理设施运行	废布袋		
13				软装工序	布料、真皮边角料		
14				五金配件加工	金属边角料		
15				一般原料的包装材料	一般原料废包装物		
16				油性漆、UV 漆、稀释剂、固化剂、胶水的使用	废化学品包装桶、废抹布手套		
17					废催化剂、废沸石		
18			危险废物	废气治理设施运行	废漆渣		
19			旭刨及彻	及【石垤以旭丝1]	废过滤棉		
20					废活性炭		
21				设备维护	废润滑油和废润滑油桶、废抹布 手套		
22		生活垃圾		员工办公、饭堂就餐	生活垃圾、餐厨垃圾		
23	噪	没备喂用		主体工程设备运转时产生的噪声			
24	噪声			辅助设备如空压机、风机等运转时产生的 噪声			

3.3 项目给排水平衡

本项目用水主要为生活用水和生产用水,其中生产用水主要为水帘柜、喷淋塔用水。 1、生活用水

本项目员工 800 人,其中 600 人在厂内食宿,参照《用水定额 第 3 部分:生活》 (DB 44/T 1461.3-2021),在厂内食宿员工生活用水系数按国家行政机构有食堂和浴室的定额先进值-15m³/(人•a)计算,不在厂内食宿员工生活用水系数按国家行政机构无食堂和浴室的定额先进值-10m³/(人•a)计算,则员工生活用水量为 11000m³/a。

2、生产用水

本项目生产用水量 21382.8 m^3/a ,损耗量 19866 m^3/a ,循环量 3465000 m^3/a ,委外处 理量 1516.8 m^3/a 。

3.4 物料平衡

1、总 VOCs 平衡

项目总VOCs物料平衡详见下表。

表 3.4-2 项目总 VOCs 平衡表 (单位: t/a)

序号	输入	<u> </u>	序号	输出		
\ <u>1</u> 77 →	含总 VOCs 原材料名称 总 VOCs 成分投入量 /		T S	输出物料名称	输出量	
1	已调配油性底漆	16.593	1	总 VOCs(治理去除)	28.764	
2	已调配油性面漆	13.199	2	总 VOCs(有组织排放)	5.371	

3	已调配 UV 底漆	3.100	3	总 VOCs(无组织排放)	4.183
4	已调配 UV 面漆	2.561	/	/	/
5	水性胶水	0.594	/	/	/
6	白乳胶	0.272	/	/	/
7	UV 漆清洗剂(异丙醇)	1	/	/	/
8	油性漆擦拭清洗剂(稀释 剂)	1	/	/	/
合计	/	38.319	合计	/	38.319

注: 总 VOCs 成分投入量=含总 VOCs 原材料×施工状态下挥发性有机化合物含量。

2、水平衡

项目水平衡详见下表。

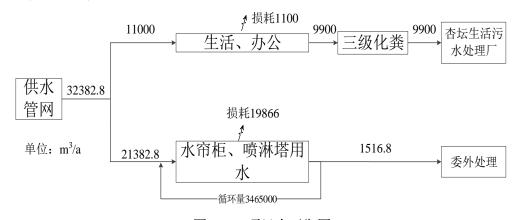


图 3.4-1 项目水平衡图

3.5 施工期污染源分析

3.5.1 施工废气

厂房一未建设,暂时作为地上停车场使用,其余建筑已建设。施工现场不设临时工棚,施工人员租住附近的出租房。本项目施工过程中造成大气污染的主要产生源有:施工扬尘以及施工机械、运输车辆产生的尾气。

3.5.1.1建筑施工扬尘

在建设项目施工过程中,施工扬尘将主要来自:

- ①施工前期的场地平整和地基处理中,将应用挖土机和推土机进行堆填,在土方搬运、倾倒过程中,将有少量土壤颗粒物从地面、施工机械或土堆飞扬进入空气中;
- ②施工期间运送散装建筑材料的车辆在行驶过程中,将有少量物料洒落进入空气中,另外车辆在通过未铺衬路面或落有较多尘土的路面时,将有路面扬尘产生;
 - ③制备建筑材料过程,将有粉状物逸散进入空气中;

④原料堆场和暴露松散土壤的工作面,受风吹时,表面颗粒物会受侵蚀随风飞扬进入空气中。

⑤另外,道路的修筑、混凝土搅拌等都会产生扬尘。建议使用预拌混凝土,这样可大大减少施工建筑物料制备过程中的扬尘产生量。据有关文献资料介绍,施工工地的扬尘主要是运输车辆的行驶产生的,约占扬尘量的 60%。据实测,施工现场空气中 TSP 的浓度将超过 10mg/m³,大于环境空气质量三级标准的限值。但这些尘的颗粒较大,扩散过程中易于沉降,因此影响范围相对较小。

施工工地扬尘排放量核定按物料衡算方法进行,即根据建筑面积(市政工地按施工面积)、施工期和采取的扬尘污染控制措施,按基本排放量和可控排放量分别计算:

 $W=W_B+W_K$ $W_B=A\times B\times T$

 $W_K = A \times (P11 + P12 + P13 + P14 + P15 + P2) \times T$

W: 施工工地扬尘排放量, 吨;

WB: 基本排放量, 吨;

 W_K : 可控排放量, 吨;

A: 建筑面积(市政工地按施工面积), 万平方米:

B: 基本排放量排放系数,吨/万平方米 月;

P11、P12、 P13、 P14、P15: 各项控制扬尘措施所对应的一次扬尘可控制排放量排污系数,吨/万平方米·月;

P2: 控制运输车辆扬尘所对应二次扬尘可控排放量系数,吨/万平方米·月;

T: 施工期,月,计算年基本排放量时,最大值为:建筑工程12个月,市政工程为8个月。

 工地类型
 基本排放量排放系数B吨/万平方米·月

 建筑工地
 4.8

 市政工地
 6.6

表 3.5-1 施工工地扬尘基本排放系数

表 3.5-2 施工工地扬尘可控排放系数

工地			可控排放量排放系数B(吨/万平方米·月)				
土地 类型	扬尘类型	扬尘污染控制措施	代码	措施达标			
火 垒			1 (149	是	否		
7+1 55	一次扬尘	道路硬化管理	P11	0	0.71		
建筑工地	(累计计	边界围档	P12	0	0.47		
1.15	算)	裸露地面覆盖	P13	0	0.47		

工地			可控排放量排放	系数B(吨/万	平方米 月)
土地 类型	扬尘类型	扬尘污染控制措施	代码	措施法	达标
大生			1749	是	否
		易扬尘物料覆盖	P14	0	0.25
		定期喷洒抑尘剂	P15	0	0.3
	二次扬尘	运输车辆机械冲洗装置	P2	0	/
	一八加土	运输车辆简易冲洗装置	P2	1.55	3.1
	\%\ \ \Z\\	道路硬化管理	P11	0	1.02
	一次扬尘 (累计计 算)	边界围档	P12	0	1.02
市政		易扬尘物料覆盖	P14	0	0.66
工地	开丿	定期喷洒抑尘剂	P15	0	0.3
	二次扬尘	运输车辆机械冲洗装置	P2	0	/
	一八加土	运输车辆简易冲洗装置	P2	3.4	6.8
拆迁工 地	一次扬尘	边界围档及雾喷	P16	12.1	24.2

本项目厂房一占地面积 3132m²,建筑面积为 19892m²,施工期为 12 个月,每月平均施工完成的面积为 1658m²,本项目做好相关控制扬尘措施,则每月产生的扬尘为:

本项目施工期扬尘量为: 9.55 吨。

3.5.1.2施工机械、运输车辆产生的尾气

在施工期,除了施工扬尘大气污染物外,施工机械及运输车辆燃油还会排放一定量的尾气污染物。但是,尾气的影响是暂时的,随着施工的结束而消失。项目施工期的施工人员均不在施工场地食宿,就餐以外购盒饭方式解决,不产生食堂油烟。

3.5.2 施工废水

施工期废水主要来自以下几个方面:①施工人员排放生活污水;②施工场地生产废水;③施工机械机修以及机械工作时油污跑、冒、滴、漏产生的含油污水。

项目施工场地将有施工人员 40 人,不设施工营地,施工人员不在项目内食宿,根据《用水定额 第 3 部分:生活》(DB44/T 1461.3-2021),国家行政机构无食堂和浴室的定额先进值,施工人员生活用水系数按 10m^3 /(人•a)计算,则厂房一施工期生活用水量为 400m^3 。污水排放量按 90%计,则生活污水排放量为 360m^3 。施工人员生活污水及污染物排放情况见表 3.5-3。

表 3.5-3 施工人员生活污水及污染物排放情况

污染因子	$\mathrm{COD}_{\mathrm{Cr}}$	BOD ₅	SS	NH ₃ -N
污染物产生浓度(mg/L)	285	100	200	28.3
污染物产生量(t/施工期)	0.103	0.036	0.072	0.010

污染因子	$\mathrm{COD}_{\mathrm{Cr}}$	BOD ₅	SS	NH ₃ -N
污染物排放浓度(mg/L)	40	10	10	5
污染物排放量(t/施工期)	0.014	0.004	0.004	0.002

施工废水包括开挖和钻孔产生的泥浆水、机械设备运转的冷却水和洗涤水,其余的建筑污水包括砂石冲洗水、设备车辆冲洗水等,废水中含有大量的泥沙与悬浮物,另有少量油污,基本无有机污染物。主要污染物为 SS 和石油类,建设单位应在施工进场初期首先建设好各类施工废水处理设施,将各类施工废水分类处理后,回用作施工用水或用于施工场地洒水抑尘。生活污水经化粪池预处理达到广东省地方标准《水污染物排放限值》中第二时段的三级标准后排入污水管网。

3.5.3 施工噪声

根据对建筑施工噪声的分类和主要噪声源的分析,可以得出建筑施工噪声源主要为施工机械噪声,如打桩机、搅拌机等,施工作业噪声主要指一些零星的敲打声、装卸车辆的撞击声、拆装模板的撞击声等,施工车辆的噪声属于交通噪声。这些施工噪声中对声环境影响最大是机械噪声,根据《环境噪声与振动控制工程技术导则》(HJ2034-2013)附录 A,各种施工机械 10 米处的声级见下表。因此,施工期噪声声级为 75~105dB(A)。

序号	设备名称	距源 10m 处 A 声级 dB(A)	序号	设备名称	距源 10m 处 A 声级 dB(A)
1	打桩机	95~105	5	震动夯锤	86~94
2	电动挖掘机	75~83	6	混凝土输送泵	84~90
3	推土机	80~85	7	重型运输车	78~86
4	商砼搅拌车	82~84	8	木工电锯	90~95

表 3.5-4 施工机械设备噪声值

3.5.4 施工固废

3.5.4.1 生活垃圾

施工人员产生的生活垃圾按产污系数法进行核算,生活垃圾产污系数取经验参数 1kg/人.d,施工人员人数为 40 人/d,则施工期间施工人员产生的生活垃圾量为 0.04 t/d,共 14.4t,由市政收运。

本项目无大型地下建构物,施工场地平整,施工过程土石方可场内平衡,没有产生施工弃土。

3.5.4.2施工垃圾

施工过程中,设备安装可能产生含油抹布和废零件。根据项目特征,废零件主要为钢铁切割边角料等,属于一般工业固废,可外卖综合利用。

3.5.4.3建筑垃圾

本项目不涉及拆迁,产生的建筑垃圾主要为建设建筑垃圾。施工过程中产生的建筑垃圾以无机物为主,采用建筑面积系数法,估算施工期建筑垃圾产生量。预测模型如下:

$$Js = Qs \times Cs$$

式中:

Js 为年建筑垃圾产生量(t/a);

Qs 为年建筑面积(m^2/a);Cs 为年平均每平方米建筑面积建筑垃圾产生量($kg/a m^2$)。

由于 Cs 值与施工水平、建筑类型等因素有关,根据同类项目经验,Cs 取值为 $40\sim$ 50 kg/a m^2 ,本次评价取 Cs=50 kg/a m^2 ,本项目厂房一总建筑面积为 $19892m^2$,则项目施工期产生建筑垃圾约为 994.6t,由当地环卫部门统一收集处理。

3.5.5 施工期污染源汇总

综上所述,本工程施工期源强见表 3.5-5。

类型	污染物	排放量(t/施工期)	拟采取措施		
	水量	360			
	$\mathrm{COD}_{\mathrm{Cr}}$	0.014			
废水	BOD_5	0.004	经三级化粪池预处理后,排入市政管网		
	SS	0.004			
	NH ₃ -N	0.002			
废气	施工扬尘	9.55	施工场地洒水、道路硬化管理、边界围档、		
及し	机械废气	少量	裸露地面覆盖及易扬尘物料覆盖		
	生活垃圾	14.4	由当地环卫部门统一收集处理		
固废	含油抹布	少量	田 田 地 工 印 1 1 1 1 1 1 1 1 1		
凹及	废零件	少量	外卖综合利用		
	建筑垃圾	994.6	由当地环卫部门统一收集处理		
噪声	各种作业施工机械	75~105dB (A)	选用低噪声设备,设置噪声隔离		

表 3.5-5 项目施工期源强汇总表

3.6 运营期主要污染源强分析及防治措施

3.6.1 项目水污染源强分析及防治措施

本项目主要产生生活污水和生产废水,其中生产废水主要为水帘柜、喷淋塔废水。

3.6.1.1 生活污水

项目员工用水量为 11000m³/a,产污系数取 0.9,则项目员工生活污水排放总量为 9900m³/a,参考《排放源统计调查产排污核算方法和系数手册》(生态环境部公告 2021

年第 24 号)中城镇生活源水污染物产生系数,结合项目实际,项目生活污水污染物产生及排放情况见下表。

污染物	产生情	况	项目排放口护	非放情况	污水厂排放情况		
17条物	产生浓度(mg/L)	产生量(t/a)	产生浓度(mg/L)	排放量(t/a)	排放浓度(mg/L)	排放量(t/a)	
pН	6~9		6~9		6~9		
COD_{Cr}	285	2.822	200	1.980	40	0.396	
BOD_5	100	0.990	50	0.495	10	0.099	
NH ₃ -N	28.3	0.280	25	0.248	5	0.050	
SS	200	1.980	100	0.990	10	0.099	
LAS	20	0.198	10	0.099	0.5	0.005	
TN	39.4	0.390	30	0.297	15	0.149	
TP	4.1	0.041	4.1	0.041	0.5	0.005	

表3.6-1 项目生活污水产生和排放情况

本项目生活污水经三级化粪池处理、食堂废水经隔油隔渣处理达到广东省地方标准《水污染物排放限值》(DB 44/26-2001)第二时段三级标准后排入杏坛污水处理厂处理,尾水排入北马河后汇入顺德支流,杏坛污水处理厂尾水执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准及广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准较严值。

3.6.1.2 生产废水

本项目喷涂线、打磨车间和抛光房均设有水帘柜,废水经沉淀清渣处理后可循环使用,参考《涂装设备设计应用手册》(马春庆等编著,北京: 化学工业出版社,2019.01)第 123~124 页中"循环水的补充量为循环量的 1%~2%",水帘柜损耗量约为循环水量的 1%,定期补充损耗即可。

项目 UV 喷涂线、手工喷漆房均采用了喷淋塔处理,按照《环境工程设计手册》中的有关公式,根据类似项目实际治理工程的情况,则本项目喷淋塔循环水量按液气比计算:

$$Q_{\pi} = Q \leq \times (1.5 \sim 2.5) \div 1000$$

式中: O_* —喷淋液循环水量, m^3/h ;

 Q_{η} —设计处理风量, m^3/h ;

1.5~2.5—液气比为 1.5~2.5L(水)/ m^3 (气) h,本项目取中间值 2。

喷淋塔水箱容积根据建设单位提供的废气治理设施设计参数计算得出,蒸发损耗量按照循环水量的 1%计算,此外,旋流喷淋塔顶部均自带有 W 型除雾装置,喷淋塔后还配有干式过滤除雾器,可有效将废气夹带的雾粒滴捕集下来回到喷淋塔中,预计雾粒总

体去除效果达 50%以上, 因此损耗量按 1%×50%=0.5%计。

为保证废气处理效果,需定期更换水帘柜和喷淋塔废水,根据《佛山市生态环境局 顺德分局关于加强重点行业喷淋废水更换工作的通知》,捞渣不低于2次/天。企业原则 上每星期至少更换一次喷淋废水,按喷枪数量确定喷淋废水更换量,每支喷枪(1条自 动喷涂线暂定按1支喷枪计算)每次废水更换量不少于4吨,本项目于厂房三南面设有 混凝沉淀池对废水进行处理回用,换水频次按1次/半月(一年更换24次),水帘柜和 喷淋塔捞渣频次为2次/天,每支喷枪每次废水更换量不少于4吨,更换量满足《佛山市 生态环境局顺德分局关于加强重点行业喷淋废水更换工作的通知》要求,更换出的水帘 柜和喷淋塔废水交由有相应处理能力的工业废水处理单位处理,项目年工作330天,每 天工作 10 小时,经计算生产给排水情况详见下表。

位置	喷枪数量(1条自 动喷涂线按1支 喷枪计算)	设备	设计风 量 m³/h	水槽/水 箱总容 积(m³)	水帘柜/喷淋 塔总循环水 量(m³/h)	损耗量 (m³/a)	更换废 水量 (m³/a)	补充用 水量 (m³/a)	
厂房二底		水帘柜		4	6	198			
療房 厂房二面	2	二级水喷淋	60000	3.6	240	3960	192	4515	
漆房		水帘柜		4	5	165			
厂房二 UV 喷涂线	2	喷淋塔	48000	3.6	96	1584	192	1776	
厂房三底	3	水帘柜	60000	12	12	396	288	4644	
漆房	3	二级水喷淋	00000	3.6	240	3960	200	4044	
厂房三面	3	水帘柜	80000	4	15	495	288	6062	
漆房	3	二级水喷淋	80000	3.6	320	5280	288	6063	
合计	/	/		/	934	16038	960	16998	

表3.6-2 喷漆房水帘柜、喷淋塔给排水情况

备注: UV喷涂线设置过滤棉除漆雾,无需设置水帘柜。

位置	设备	设备	単个水帘柜水 単个水帘柜循	损耗量	更换废
14.14.	以 角	数量	槽容积(m³) 环水量(m³/h)	(m^3/a)	$(m^3/3)$

	位置	设备	设备 数量	单个水帘柜水 槽容积(m³)	单个水帘柜循 环水量(m³/h)	_	更换废水量 (m³/a)	补充用水量 (m³/a)
Ī	打磨房	水帘柜	28	0.8	4	3696	537.6	4233.6
Ī	抛光房	水帘柜	1	0.8	4	132	19.2	151.2
Ī	合计	/	/	/	/	3828	556.8	4384.8

表3.6-3 打磨抛光房水帘柜给排水情况

3.6.2 项目大气污染源强分析及防治措施

本项目产生的废气污染物包括木工粉尘、打磨粉尘、喷漆废气、胶水废气、五金抛 光废气、燃烧废气。

废气产污节点和处理处置方式汇总见表 3.6-4, 具体源强分析及防治措施见下文。

表3.6-4 本项目废气产污节点、废气收集、处理处置方式汇总表

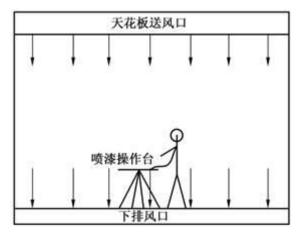
所在位置	排气筒	排气筒	收集区域		收集效	废气类型		总风量		污染因子	及处理效	率%	
	编号	高度/m	以来区域	以来刀具	率%	及(天宝	处理 刀式	m³/h	颗粒物	VOCs	二甲苯	SO ₂	NOx
厂房二 4F	G1	40	油性漆喷漆区	调漆、底漆、底漆及面漆烘干: 全密闭空间-单层密闭负压 面漆:全密闭空间-单层密闭正压	90	喷漆废气	二级水喷淋+干式过滤+沸 石转轮+脱附+催化燃烧	60000	99.6	90	90	/	/
厂房二楼顶	G1	40	催化燃烧装 置	直排	100	燃烧废气	/		0	/	/	0	0
厂房二 2F	G2	40	木加工区域	外部集气罩	30	木工粉尘	布袋除尘器	120000	99	/	/	/	/
厂房二 4F	G3	40	油磨区	全密闭空间-单层密闭负压	90	打磨粉尘	水帘柜	52000	85	/	/	/	/
厂房二 5F	G4	40	贴绵区	外部集气罩	30	胶水废气	活性炭吸附	15000	/	50	/	/	/
厂房二 1F	U 4	40	拼板区	全密闭空间-单层密闭负压	90	双小汉(1日 1工人(以下)]	13000	/	50	/	/	/
厂房二 3F	G5	40	木磨区	全密闭空间-单层密闭负压	90	打磨粉尘	水帘柜	104000	85	/	/	/	/
厂房二 1F	G6	40	木工开料区 域	外部集气罩	30	木工粉尘	布袋除尘器	60000	99	/	/	/	/
厂房三 4F	G7	40	油性漆喷漆区	调漆、底漆、烘干:全密闭空间- 单层密闭负压 面漆:全密闭空间-单层密闭正压	90 80	喷漆废气	二级水喷淋+干式过滤+沸 石转轮+脱附+催化燃烧	140000	99.6	90	90	/	/
厂房三楼顶	G7	40	催化燃烧装 置	直排	100	燃烧废气	/		0	/	/	0	0
厂房三 2F	G8	40	木加工区域	外部集气罩	30	木工粉尘	布袋除尘器	120000	99	/	/	/	/
厂房三 4F	G9	40	油磨区	全密闭空间-单层密闭负压	90	打磨粉尘	水帘柜	104000	85	/	/	/	/
厂房三 5F			贴绵区	外部集气罩	30	胶水废气			/	50	/	/	/
厂房三 1F	G10	40	拼板区、危废 暂存间	全密闭空间-单层密闭负压	90	胶水废气、 危废间有机 废气	活性炭吸附	15000	/	50	/	/	/
厂房三 3F	G11	40	木磨区	全密闭空间-单层密闭负压	90	打磨粉尘	水帘柜	104000	85	/	/	/	/
厂房三 1F	G12	40	木工开料区 域	外部集气罩	30	木工粉尘	布袋除尘器	60000	99	/	/	/	/

所在位置	排气筒	排气筒	收集区域		收集效	废气类型	处理方式	总风量	污染因子及处理效率%				
別在江直	编号	高度/m	以朱色枫	以朱刀八	率%	及(天空	发程 刀式	m ³ /h	颗粒物	VOCs	二甲苯	SO ₂	NOx
厂房二 4F	G13	40	UV 漆喷漆线 (含喷漆、流 平、光照区)		95	喷漆废气	过滤棉+水喷淋+干式过滤器+活性炭吸附	48000	99.8	55	/	/	/
厂房四 3F	G14	40	贴绵区	外部集气罩	30	胶水废气	活性炭吸附	3000	/	50	/	/	/
宿舍大楼	G15	40	炉灶	/	100	油烟	静电除油净化器	30000	85	/	/	/	/
宿舍大楼	G16	40	炉灶	/	100	油烟	静电除油净化器	30000	85	/	/	/	/
厂房三 1F	无组织	/	抛光区	外部集气罩	30	五金抛光粉 尘	水帘柜	5000	85	/	/	/	/

备注:收集效率、处理效率选取《广东省生态环境厅关于印发工业源挥发性有机物和氮氧化物减排量核算方法的通知》(粤环函〔2023〕538号)"3.3-2 废气收集集气效率参考值"和"表 3.3-3 废气治理效率参考值"的相关系数;

治理技术	治理工艺	VOCs 去除率	治理技术	治理工艺	VOCs 去除率
燃烧及其组合技术	旋转式分子筛吸附-脱附-催化燃烧	75%	吸附技术	活性炭吸附	50%
喷淋吸收	非水溶性 VOCs 废气	10%	喷淋吸收	非水溶性 VOCs 废气	10%
综合*	二级水喷淋+干式过滤+沸石转轮吸附+脱附+催化燃烧	80%	综合	水喷淋+干式过滤+活性炭吸附	55%

*根据附件8工程实例可得,通过合理工艺参数选择和设计,"旋转式分子筛吸附-脱附-CO" VOCs 废气实际处理效率可达到91.21%~97.13%,苯系物可达96%以上。同时,根据《家具制造工业污染防治可行技术指南》(HJ 1180-2021):"家具制造工业采用的典型治理技术路线为"吸附浓缩+CO"。该技术反应温度低、不产生热力型氮氧化物,VOCs 去除效率通常可达95%以上"。 为保守起见,本项目"二级水喷淋+干式过滤+沸石转轮吸附+脱附+催化燃烧"对有机废气去除效率取90%。


治理工艺	颗粒物去除率	治理工艺	颗粒物去除率
水帘柜	85%	过滤棉	95%
水喷淋	85%	水喷淋	85%
干式过滤器	85%	干式过滤器	85%
水帘柜+水喷淋+干式过滤	99.6%	过滤棉+水喷淋+干式过滤	99.8%

废气收集类型	废气收集方式	情况说明	集气效率
全密封设备/空	单层密闭负压	VOCs 产生源设置在密闭车间、密闭设备(含反应釜)、密闭管道内,所	90%

间		有开口处,包括人员或物料进出口处呈负压	
	单层密闭正压	VOCs 产生源设置在密闭车间内,所有开口处,包括人员或物料进出口处 呈正压,且无明显泄漏点	80%
	双层密闭空间	内层空间密闭正压,外层空间密闭负压	98%
	设备废气排口直连	设备有固定排放管(或口)直接与风管连接,设备整体密闭只留产品进出口,且进出口处有废气收集措施,收集系统运行时周边基本无 VOCs 散发。	95%
半密闭型集气	污染物产生点(或生产设施)四周及上下有围挡设施,符合以下两种情况:1、仅保	敞开面控制风速不小于 0.3m/s;	65%
设备(含排气柜)	留 1 个操作工位面; 2、仅保留物料进出通道,通道敞开面小于 1 个操作工位面	敞开面控制风速小于 0.3m/s	0
包围型集气设	通过软质垂帘四周围挡(偶有部分敞开)	敞开面控制风速不小于 0.3m/s;	50%
备	通及扒灰垩巾舀用凹臼 (附有即)灰灯/	敞开面控制风速小于 0.3m/s	0
外部集气设备	,	相应工位所有 VOCs 逸散点控制风速不小于 0.3m/s	30%
71' 印朱 【以台	/	相应工位所有 VOCs 逸散点控制风速小于 0.3m/s,或存在强对流干扰	0
无集气设施	/	1、无集气设施; 2、集气设施运行不正常	0

手工喷漆房风量计算

四间手工喷漆房均采取手动喷漆,喷漆房设计要求应满足《家具制造业手动喷漆房通风设施技术规程》(AQ/T4275-2016)相关规范,手动喷漆房采用上送下排单向流组织时,上送风的气流方向应垂直向下,送风口宜布满整个天花板;若采用上送侧排单向流气流组织时,上送风的气流方向与垂直面的夹角应不大于 45 度,送风口应与房间天花板同宽,送风口长度应不小于天花板长度的 1/2。手动喷漆房应采取均流措施,宜通过静压仓等装置保证气流的均匀性,送入静压仓的空气流速宜为 2~3 m/s,不能大于 5.0 m/s。喷漆房换气次数为 60 次/h。

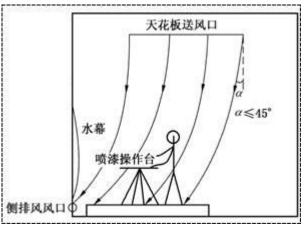
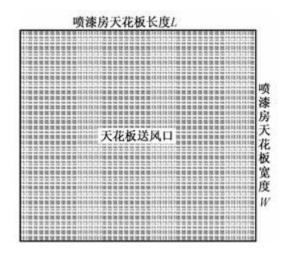



图 3.6-1 喷漆房的气流组织形式

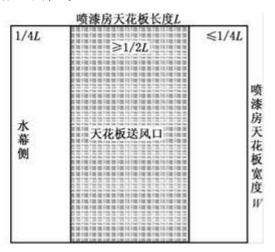


图 3.6-2 喷漆房送风口位置布置示意图

烘干房的设计说明:

喷漆房与烘干房的抽风系统独立,烘干房通风方式采用下进风,上抽风方式。

手工喷漆房內设置水帘柜,废气在离心风机的引力作用下,喷漆雾通过底部水帘柜后被截留,后与烘干房、调漆房等废气汇合后,再由离心风机抽至"气旋喷淋塔+干式过

滤器+沸石转轮吸附-脱附+CO"处理后通过排气筒 G2 排放。

为确保废气得到有效收集,减少无组织排放污染物,喷漆房、调漆室按60次/小时换气次数计算风量;流平、烘干室的换风次数参考《工业企业设计卫生标准》(GBZ1-2010)的要求,生产过程中产生有害物质的车间换气次数每小时不少于12次,本项目按30次/小时计算,则各操作室体积和所需风量如下表所示。

喷漆房	工位	占地面 积/m²	高/m	体积(m³)	换气次数(次 /h)	数量(个)	理论所需风量 (m³/h)	建议设计风量 (m³/h)
	底漆房	57.6	3.2	184.32	60	1	11059	/
厂房二油性喷	底漆烘干房	180	2.8	504	30	1	15120	/
海房(排	面漆房	43.2	3.2	138.24	60	1	8294	/
气筒	面漆烘干房	170	2.8	476	30	1	14280	/
G1)	调漆室	5	2.8	14	60	1	840	/
G1)	合计	/	/	/	/	/	49594	60000
	底漆房	57.6	3.2	184.32	60	2	22118	/
厂房三	底漆烘干房	320	2.8	896	30	1	26880	/
油性喷	底漆调漆房	5	2.8	14	60	1	840	/
漆房(排	面漆房	43.2	3.2	138.24	60	3	24883	/
气筒	面漆烘干房	480	2.8	1344	30	1	40320	/
G 7)	面漆调漆室	5	2.8	14	60	1	840	/
	合计	/	/	/	/	/	115882	140000

表3.6-5 项目手工喷漆房配置风量计算一览表

风机采用自动变频控制,当部分喷涂房不工作时,对应的抽风口将同时关闭,相应 传感器将这一信号传送到变频器从而自动调节风机频率,使风机的抽风量与实际所需排 风量相匹配,从而确保排风效果。

厂房二UV喷涂线风量计算

UV喷涂调漆工艺位于手工喷漆房调漆室,风量不重复计算,UV喷涂线换风次数参考《工业企业设计卫生标准》(GBZ1-2010)的要求,生产过程中产生有害物质的车间换气次数每小时不少于12次,UV喷涂产生漆雾量较大,本项目换气次数按50次/小时计算,则各操作室体积和所需风量如下表所示。

工位		尺寸		 体积(m³)	换气次	理论所需	建议设计
1.11	长m	宽 m	高m	 	数(次/h)	风量(m³/h)	风量(m³/h)
底漆线(含喷涂、流平、固化)	45	2.8	3.2	403.2	50	20160	/
面漆线(含喷涂、流平、固化)	45	2.8	3.2	403.2	50	20160	/
	40320	48000					

表3.6-6 项目 UV 喷涂线配置风量计算一览表

UV 喷涂线涂装废气经过滤棉除漆雾后与流平及固化废气一并经水喷淋+干式过滤器+活性炭吸附处理后通过排气筒 G13 排放。

打磨粉尘风量计算

建设单位设有2间木磨房、2间油磨房,打磨房密闭负压,每个工位配套1个水帘柜,打磨房采用密闭负压方式收集处理打磨粉尘。为确保废气得到有效收集,减少无组织排放污染物,打磨房按60次/小时换气次数计算风量。

排气筒	生产车间	占地面积 m²	高度 m	体积(m³)	换气次数 (次/h)	数量 (个)	理论所需风 量(m³/h)	建议设计风量 (m³/h)
G3	油磨房	225	3.2	720	60	2	43200	52000
G5	木磨房	450	3.2	1440	60	1	86400	104000
G9	油磨房	450	3.2	1440	60	2	86400	104000
G11	木磨房	450	3.2	1440	60	1	86400	104000

表3.6-7 项目打磨房配置风量计算一览表

木加工废气收集所需风量核算

项目使用半密闭集气罩对开料、刨光、锣制、出榫、打眼、雕花等工序产生的粉尘 进行收集,废气收集设施设计和安装阶段,根据污染物质的粒径大小和收集难易程度,合理布置集气范围,严格控制吸风口与废气产生位置的距离、选择合适的风机风量,保 障集气罩收集时废气的收集效率。

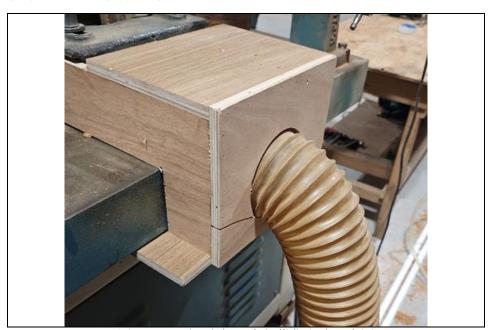


图 3.6-3 项目木加工废气收集方式示意图

《废气处理工程技术手册》(王纯、张殿印主编,化学工业出版社,2013 版)中半密闭集气罩的排气量 Q 的计算公式如下:

Q=Fv

F为操作口面积, m;

v 为操作口平均速度, 0.5~1.5m/s。

表3.6-8 木加工废气收集风量核算表

排气筒	生产线	设备名称	集气口数 量(个)		操作口平均 风速(m/s)	理论所需风 量(m³/h)	建议设计风量 (m³/h)
G2	厂房二 2F	木加工设备	123	0.22	1	97416	120000
G6	厂房二 1F	开料设备	57	0.24	1	49248	60000
G8	厂房三 2F	木加工设备	123	0.22	1	97416	120000
G12	厂房三 1F	开料设备	57	0.24	1	49248	60000

备注: 部分设备设多个集气罩,单个集气设备周长数据来源于建设单位提供的信息。

胶水及危废间废气收集所需风量核算

项目使用侧吸罩对贴绵工序产生的有机废气进行收集,拼板、冷压工序及危废间产生的废气采用整室收集。

表3.6-9 贴绵废气收集风量核算表

排气筒	生产线	工序	集气罩数 量(个)	集气罩面积 (m²)		集气罩至污染 源的距离(m)	
G4	厂房二 5F	贴绵工序	2	0.4	0.3	0.35	2187
G10	厂房三 5F	贴绵工序	2	0.4	0.3	0.35	2187
G14	厂房四 3F	贴绵工序	2	0.4	0.3	0.35	2187

备注:集气设备周长数据来源于建设单位提供的信息。

表3.6-10 项目拼板、冷压工序配置风量计算一览表

排气筒	区域	占地面 积 m²	高度 m	体积 (m³)	换气次数(次/h)	数量 (个)	理论所需风量 (m³/h)
G4	厂房二 1F 冷压拼板区域	65	2.5	162.5	60	1	9750
C10	厂房三 1F 冷压拼板区域	54	2.5	135	60	1	8100
G10	危废间	42.5	2.5	106.25	20	1	2125

根据《吸附法工业有机废气治理工程技术规范》(HJ2026-2013)"6.1.2 治理工程的处理能力应根据废气的处理量确定,设计风量宜按照最大废气排放量的 120%进行设计",G4、G10、G14 理论所需风量分别为 11937m³/h、12412m³/h、2187m³/h,建议设计风量分别为 15000m³/h、15000m³/h、3000m³/h。

3.6.2.1 喷漆废气(排气筒 G1、G7、G13)

本项目设有1条UV喷涂线(底漆)、1条UV喷涂线(面漆)、3个手工底漆房、4个手工面漆房,手工喷漆房均使用油性涂料,涂料的储存和调配在各自配套的调漆房完成;自动喷涂线均使用UV涂料,涂料的储存和调配在手工喷漆房的调漆房完成。

1、喷漆废气产生情况

喷漆废气主要分为四部分:

- ①调漆的过程会挥发出少量有机废气及臭气浓度;
- ②喷漆过程会产生漆雾颗粒、有机废气及臭气浓度;
- ③流平、烘干、光固化过程油漆中有机溶剂挥发出的有机废气及臭气浓度;
- ④喷枪清洗过程稀释剂挥发产生的有机废气及臭气浓度。

根据上文分析,项目调漆、喷漆、固化/烘干、喷枪清洗过程污染物产生源强见下表。

表3.6-11 项目喷涂工序污染物产生量核算表

喷涂线(污	喷枪数	冲冰米型	使用量	7E L	田八	有机质		漆雾(颗
染源)	量	油漆类型	(t/a)	项目	固分	总 VOCs	其中二甲苯*	粒物)
	1	油性底漆	11.643	组成比例%	64.37	35.63	6	/
	1	和江风秋	11.043	含量 t/a	7.495	4.148	0.699	4.122
厂房二油性	1	油性面漆	8.296	组成比例%	64.37	39.77	5	/
喷漆房(排	1	1四1工四7次	0.290	含量 t/a	5.340	3.300	0.415	1.869
气筒 G1)	,	喷枪清洗剂	0.25	组成比例%	0	100	0	/
	/	(稀释剂)	0.23	含量 t/a	0.000	0.250	0.000	/
	/	小计	20.189	含量 t/a	12.835	7.698	1.113	5.991
	8	UV 底漆	57.957	组成比例%	94.65	5.35	0	/
	0			含量 t/a	54.857	3.100	0.000	16.457
厂房二 UV	8	UV 面漆	43.704	组成比例%	94.14	5.86	0	/
喷涂线(排				含量 t/a	41.143	2.561	0.000	12.343
气筒 G13)	/	喷枪清洗剂	1	组成比例%	0	100	0	/
		(异丙醇)	1	含量 t/a	0.000	1.000	0.000	/
	/	小计	102.661	含量 t/a	96.000	6.661	0.000	28.800
	3	油性底漆	34.929	组成比例%	64.37	35.63	6	/
	3	和工人人	34.727	含量 t/a	22.485	12.445	2.096	12.367
厂房三油性	3	油性面漆	24.889	组成比例%	64.37	39.77	5	/
喷漆房(排	3	1四江田4次	24.009	含量 t/a	16.021	9.899	1.244	5.607
气筒 G7)	,	喷枪清洗剂	0.75	组成比例%	0	100	0	/
	/	(稀释剂)	0.73	含量 t/a	0.000	0.750	0.000	/
	/	小计	60.568	含量 t/a	38.506	23.094	3.340	17.974
合计	/	/	183.418	含量 t/a	/	37.452	4.454	52.765

备注:根据企业提供的油漆及稀释剂的 MSDS,苯系物只含二甲苯,故苯系物只考虑二甲苯的源强计算。

表3.6-12 项目喷涂工序污染物挥发占比

厂房	油漆种类	污染物	产生量 (t/a)	产生速 率(kg/h)	调漆占 比%	调漆产生 速率 kg/h	调漆产 生量 t/a	喷漆占 比%	喷漆产生 速率 kg/h	喷漆产 生量 t/a		生速率	
	油性	TVOC/NMHC	4.148	1.603	5	0.080	0.207	20	0.321	0.830	75	1.202	3.111
		其中二甲苯	0.699	0.270	5	0.014	0.035	20	0.054	0.140	75	0.203	0.524
厂房	底漆	漆雾(颗粒物)	4.122	1.014	/	/	/	100	1.014	4.122	/	/	/
=	油性	TVOC/NMHC	3.300	1.193	5	0.060	0.165	20	0.239	0.660	75	0.895	2.475
	油性 面漆	其中二甲苯	0.415	0.150	5	0.008	0.021	20	0.030	0.083	75	0.113	0.311
	川徐	漆雾(颗粒物)	1.869	0.632	/	/	/	100	0.632	1.869	/	/	/
	UV	TVOC/NMHC	3.100	1.284	5	0.064	0.155	20	0.257	0.620	75	0.963	2.325
厂房	底漆	漆雾(颗粒物)	16.457	6.815	/	/	/	100	6.815	16.457	/	/	/
	UV	TVOC/NMHC	2.561	1.407	5	0.070	0.128	20	0.281	0.512	75	1.055	1.921
	面漆	漆雾(颗粒物)	12.343	6.778	/	/	/	100	6.778	12.343	/	/	/
一点	计件	TVOC/NMHC	12.445	4.810	5	0.240	0.622	20	0.962	2.489	75	3.607	9.333
方	油性	其中二甲苯	2.096	0.810	5	0.041	0.105	20	0.162	0.419	75	0.608	1.572

厂房	油漆种类		产生量 (t/a)	产生速 率(kg/h)	调漆占 比%	调漆产生 速率 kg/h		喷漆占 比%	喷漆产生 速率 kg/h	喷漆产 生量 t/a	1444 T	生速率	烘干 产生 量 t/a
三	底漆	漆雾(颗粒物)	12.367	3.042	/	/	/	100	3.042	12.367	/	/	/
	24.44	TVOC/NMHC	9.899	3.580	5	0.179	0.495	20	0.716	1.980	75	2.685	7.424
	油性		1.244	0.450	5	0.023	0.062	20	0.090	0.249	75	0.338	0.933
	川深	漆雾(颗粒物)	5.607	1.897	/	/	/	100	1.897	5.607	/	/	/

3.6.2.2 木工打磨粉尘(排气筒 G5、G11)、油磨粉尘(排气筒 G3、G9)

项目对需喷涂的板材进行表面打磨,称为木磨工序;喷底漆、烘干后需要对漆面进行打磨,有利于提升面漆的附着力,称为油磨工序,以上工序均会产生少量粉尘,本环评统称为打磨粉尘。

本项目外购的成品木材表面光滑平整,无需深度打磨,只需对喷涂表面轻轻打磨,使得板材表面变得粗糙,有助于油漆更好地附着在板材表面上,参考《排放源统计调查产排污核算方法和系数手册》中《211 木质家具制造行业系数手册》-2110 木质家具制造行业系数表一实木家具、人造板家具表面光滑处理工艺的颗粒物废气产污系数为23.5g/平方米-产品,本项目喷涂产品的面积合计为1811945平方米,项目需进行1次木磨、3次油磨,则本项目木磨粉尘的产生量约42.581t/a,油磨粉尘产生量为127.742t/a。木磨粉尘收集并经水帘柜处理后,由排气筒 G5、G11 排放,油磨粉尘收集并经水帘柜处理后,由排气筒 G5、G11 排放,油磨粉尘收集并经水帘柜处理后,由排气筒 G3、G9 排放,未收集到的粉尘约80%沉降散落在设备周围及车间地面,剩余20%飘逸至车间外,以无组织形式排放。

生产车间	产污工序	喷涂面积 m²/a	单位时间最大喷涂 面积 m²	粉尘产生量 t/a	最大小时产生速率 kg/h
厂房二 3F	木磨	905972.5	274.54	21.2904	6.4516
厂房二 4F	油磨	905972.5	274.54	63.8711	19.3549
厂房三 3F	木磨	905972.5	274.54	21.2904	6.4516
厂房三 4F	油磨	905972.5	274.54	63.8711	19.3549

表3.6-13 打磨粉尘产生量核算

3.6.2.3 木工粉尘(排气筒 G2、G6、G8、G12)

项目板材加工工序位于木工车间,主要对原材料木板进行开料、刨光、锣制、出榫、打眼、雕花等机械加工,加工过程中会产生一定量的木屑粉尘,其主要污染因子为颗粒物。本项目属于木质家具制造行业,根据《排放源统计调查产排污核算方法和系数手册》(生态环境部 2021 年第 24 号公告)中《211 木质家具制造行业系数手册》-2110 木质家具制造行业系数表一实木、人造板机加工工艺的颗粒物废气产污系数 150g/立方米原

料。项目合计年加工原材料 33500m3,则木工粉尘产生量共计约 5.025t/a。

木工加工废气通过集气罩收集并经布袋除尘装置处理后,由排气筒 G2、G6、G8、G12 排放,根据佛山市生态环境局南海分局发布的《机加工类建设项目环境影响报告表编制指引》:工业粉尘 80%在室内沉降,20%逸散到大气中,因此未收集到的粉尘约 80%沉降散落在设备周围及车间地面,剩余 20%飘逸至车间外,以无组织形式排放。

排气筒	生产车间	产污工序	加工量 m³/a	单位时间最大 加工量 m³	粉尘产生量 t/a	产生速率 kg/h
G2	厂房二 2F	木加工	11445.83	3.47	1.717	0.5203
G6	厂房二 1F	开料	5304.17	1.61	0.796	0.2411
G8	厂房三 2F	木加工	11445.83	3.47	1.717	0.5203
G12	厂房三 1F	开料	5304.17	1.61	0.796	0.2411

表3.6-14 木工粉尘产生量核算

3.6.2.4 胶水废气(G4、G10、G14)

项目拼板、冷压工序使用的白乳胶,贴绵过程使用水性胶水,上述胶水使用过程中 会产生少量的有机废气和臭气,其主要污染因子为总 VOCs 和臭气浓度。

①拼板、冷压有机废气

根据白乳胶的 VOC 检测报告,白乳胶密度约为 1.01g/cm³, 其挥发性有机物含量为 28g/L, 折合 2.77%。本项目冷压、拼板工序白乳胶年用量为 5.743t/a,则其有机废气产生量为 0.159t/a。

②贴绵有机废气

水性胶水 VOCs 含量参考《印刷工业污染防治可行技术指南》(HJ1189-2020)中"水性胶粘剂"产污系数为 0.05tVOCs/t 胶粘剂,水性胶水使用量为 10.103t/a,故项目贴绵工序有机废气的产生量 0.505t/a。

综上,项目胶水使用过程中有机废气产生量合计为 0.664t/a,收集并经"活性炭吸附"处理后引至 40m 排气筒 G4、G10、G14 排放。

排气筒	生产车间	产污工序	原料使用量 t/a	单位时间最大 使用量 kg	有机废气产生 量 t/a	产生速率 kg/h
G4	厂房二 5F	贴绵	3.959	1.20	0.168	0.0510
U4	厂房二 1F	拼板、冷压	4.914	1.49	0.080	0.0241
G10	厂房三 5F	贴绵	3.959	1.20	0.168	0.0510
GIU	厂房三 1F	拼板、冷压	4.914	1.49	0.080	0.0241
G14	厂房四 3F	贴绵	3.959	1.20	0.168	0.0510

表3.6-15 胶水废气产生量核算

3.6.2.5 天然气燃烧废气(G1、G7)

根据企业提供资料,项目催化燃烧装置采用管道天然气作为燃料,核算过程如下:

排气	设备	热功率	热值	日工作时长	天然气用量	台数	天数	小计	合计
筒	以田	万 kcal/h	万 kcal/m³	h	m³/d	台	d	m³/年	万 m³/年
G1	催化燃烧装置	25	0.8	5	156.25	1	330	51562.5	10 2125
G7	准 化	25	0.8	5	156 25	1	220	51562.5	10.3123

表3.6-16 天然气用量核算

参考《排放源统计调查产排污核算方法和系数手册》(生态环境部公告 2021 年第 24 号)中的"机械行业系数手册": 颗粒物为 2.86kg/万 m^3 天然气, NO_X 为 18.7kg/万 m^3 天然气, SO_2 为 0.02S kg/万 m^3 天然气;其中 S 为燃料中的含硫量。根据《天然气》(GB17820-2018),项目所用天然气(二类)含硫率不高于 100 mg/m^3 ,按含 S 量最高不超 100 mg/m^3 计算,则 SO_2 产污系数为 2 kg/万 m^3 天然气。根据上述参数,计算本项目燃烧天然气所排放的污染物。

排气筒	使用量(万	污染物		产生情况	
押一门间	m ³ /a)	初来彻	产生速率 kg/h	产生量 t/a	产生浓度 mg/m³
		SO_2	0.0063	0.010	0.10
G1	5.15625	NOx	0.0584	0.096	0.97
		颗粒物	0.0089	0.015	0.15
		SO_2	0.0063	0.010	0.04
G7	5.15625	NOx	0.0584	0.096	0.42
		颗粒物	0.0089	0.015	0.06
		SO_2	/	0.021	/
合计	10.3125	NOx	/	0.193	/
		颗粒物	/	0.029	/

表3.6-17 天然气燃烧废气污染物产生情况表

3.6.2.6 恶臭

喷漆、喷粉固化、烘干、胶水使用等生产过程及危废间会产生少量恶臭,主要污染因子为臭气浓度。恶臭与废气一同收集后分别经过各废气处理设施处理后高空排放。项目恶臭产生量不大,经处理后预计可以达到《恶臭污染物排放标准》(GB14554-93)表1和表2恶臭污染物排放限值。

3.6.2.7 金属粉尘

项目加工五金配件时需将金属原材料进行机械加工以及打磨、抛光工序,以上工序会产生少量金属粉尘。

项目金属原材料使用量约为 280t/a。参考《排放源统计调查产排污核算排污核算方法和系数手册》中机械行业系数手册-下料-板材、铝板、铝合金版、其他金属材料、玻璃纤维、其他非金属材料-锯床、砂轮切割机切割-颗粒物产污系数为 5.30kg/t-原料,则项目机械加工粉尘产生量约为 1.484t/a。

参考《排放源统计调查产排污核算排污核算方法和系数手册》中"机械行业系数手册-预处理-干式预处理件-刚才、铝材、铝合金、铁材、其他金属材料-抛丸、喷砂、打磨、滚筒-颗粒物产污系数为 2.19kg/t-原料—末端治理技术:喷淋塔/冲击水浴治理效率为 85%",则项目打磨抛光粉尘产生量约为 0.613t/a。项目针对打磨抛光区设置高效水帘柜对粉尘进行收集,粉尘废气经高效水帘柜收集处理后无组织排放。项目高效水帘柜设置类似外部集气罩,敞开面控制风速为 1.0m/s,可有效收集粉尘废气;参考《广东省生态环境厅关于印发工业源挥发性有机物和氮氧化物减排量核算方法的通知》(粤环函(2023)538 号)表 3.3-2 废气收集集气效率参考值可知,外部集气罩-相应工位所有 VOCs逸散点控制风速不小于 0.3m/s 的收集效率为 30%,故本项目粉尘废气收集效率为 30%,高效水帘柜处理效率参考喷淋塔/冲击水浴治理效率取 85%。粉尘主要金属颗粒物,其比重较大,该部分金属粉尘约 80%自然沉降在设备周围,剩余 20%在车间内无组织排放。

生产车间	产污工序	金属粉尘产生量(t/a)	产生速率(kg/h)
厂房三 1F	五金抛光	0.613	0.1858
厂房二 1F	机加工	0.495	0.1499
厂房三 1F	机加工	0.495	0.1499
厂房四 1F	机加工	0.495	0.1499

表3.6-18 金属粉尘产生量核算

3.6.2.8 焊接烟尘

项目加工五金配件时需将部分金属工件需进行焊接,该过程会产生少量焊接烟尘。参考《排放源统计调查产排污核算排污核算方法和系数手册》中机械行业系数手册-焊接-手工电弧焊-颗粒物产污系数为 20.2kg/t-原料,项目焊条使用量为 5t/a,则焊接烟尘产生量为 0.101t/a。项目焊接工序年工作 330 天,每天工作 12 小时,则项目焊接烟尘无组织排放速率为 0.0306kg/h。

生产车间 产污工序 焊接烟尘产生量(t/a) 产生速率(kg/h) 房二 1F 焊接 0.034 0.0102 焊接 0.034 0.0102 房三 1F 厂房四 1F 焊接 0.034 0.0102

表3.6-19 焊接烟尘产生量核算

3.6.2.9 危废间废气(G10)

危废间暂存的废包装桶中含有溶剂等挥发性物质,经整室负压收集,与厂房三胶水废气一并经"活性炭吸附"处理后引至 40m 排气筒 G10 排放。

3.6.2.10 食堂油烟 (G15、G16)

根据建设单位提供资料,项目设有食堂,食堂厨房在烹饪过程中会产生油烟,油烟主要指动植物油过热裂解、挥发与水蒸气一起挥发出来的烟气,其废气中的主要成分是动植物油遇热挥发、裂解的产物、气味、水蒸气等。

项目新增800名员工,其中600名在厂区内食宿。根据《中国居民膳食指南2016》,成人每人每天烹调油25~30g,此处取30g。炒菜时油烟挥发量占总耗油量 2~4%之间,本环评取3%,则油烟产生量为0.54kg/d(0.178t/a)。厨房工作时间约为5小时/天,年工作1650小时。经过高效静电油烟净化器处理后(85%),油烟排放量为0.027t/a。

项目油烟净化器采用静电除油烟工艺,除油烟效率≥85%。类比同类工业企业食堂油烟排放情况,项目食堂产生的油烟经油烟净化器处理后,可处理达到《饮食业油烟排放标准(试行)》(GB18483-2001)大型标准,由楼顶排气筒G15、G16排放。

3.6.2.11 运输移动源(车辆尾气)

根据《环境影响评价技术导则大气环境》(HJ2.2-2018),对于编制报告书的工业一级评价项目,需分析调查受本项目物料及产品运输影响新增的交通运输移动源,包括运输方式、新增交通流量、排放污染物及排放量。

根据建设单位提供的资料,物料及产品运输方式为陆运,主要运输至附近集散地,运输距离平均约 100km,受本项目原料、产品运输影响,周边道路平均新增大型货车 10000 次/年。

结合项目所在区域社会经济发展特点,并考虑国内机动车现状及发展趋势,运输车辆国V和国 6a 标准按 1:1 计算,机动车尾气排放系数详见下表。

阶段	СО	НС	NOx
国V	1.50	0.16	0.181
国 6a	1.00	0.16	0.082
本项目	1.25	0.16	0.1315

表3.6-20 项目运输车辆排气污染物排放限值(单位: g/辆 km)

根据上表系数,本项目交通运输移动源排放污染物主要为 CO、THC、NOx,排放量约 1.25t/a、0.16t/a、0.1315t/a。

3.6.2.12 废气产排情况汇总

表3.6-21 项目废气产排情况汇总表

			₩.	사 소리. 트			<u> </u>	生情况		治理措施			排放情况		Arrakalla
工序	装置	污染物	核算方法	总产生量 t/a	污染源	收集效 率%	产生速率 kg/h	产生浓度 mg/m ³	产生量 t/a	工艺	处理效 率%	排放速 率 kg/h	排放浓度 mg/m ³	排放量 t/a	排放时 间 h
7.77 Not 150		颗粒物	系数法	4.122	G1	90	0.9125	/	3.710	二级水喷淋+干式过滤+ 沸石转轮+脱附+催化燃 烧	99.6	0.0036	/	0.015	4066
UV 漆调 漆及喷枪					厂房二 4F	/	0.1014	/	0.412	/	/	0.1014	/	0.412	4066
清洗、油性 漆调漆、喷	厂房二调漆 室、喷底漆 房、烘干房	VOCs	系数法	8.321	G1	90	2.4231	/	7.489	二级水喷淋+干式过滤+ 沸石转轮+脱附+催化燃 烧	90	0.2423	/	0.749	3091
及喷枪清	房、				厂房二 4F	/	0.2692	/	0.832	/	/	0.2692	/	0.832	3091
洗		二甲苯	系数法	1.030	G1	90	0.3510	/	0.927	二级水喷淋+干式过滤+ 沸石转轮+脱附+催化燃 烧	90	0.0351	/	0.093	2642
					厂房二 4F	/	0.0390	/	0.103	/	/	0.0390	/	0.103	2642
		颗粒物	系数法	1.869	G1	80	0.5059	/	1.495	二级水喷淋+干式过滤+ 沸石转轮+脱附+催化燃 烧	99.6	0.0020	/	0.006	2956
					厂房二 4F	/	0.1265	/	0.374	/	/	0.1265	/	0.374	2956
油性漆喷面漆	厂房二喷面 漆房	VOCs	系数法	0.660	G1	80	0.1909	/	0.528	二级水喷淋+干式过滤+ 沸石转轮+脱附+催化燃 烧	90	0.0191	/	0.053	2765
					厂房二 4F	/	0.0477	/	0.132	/	/	0.0477	/	0.132	2765
		二甲苯	系数法	0.083	G1	80	0.0240	/	0.066	二级水喷淋+干式过滤+ 沸石转轮+脱附+催化燃 烧	90	0.0024	/	0.007	2765
					厂房二 4F	/	0.0060	/	0.017	/	/	0.0060	/	0.017	2765
天然气燃	厂房二催化	颗粒物		0.015	G1	100	0.0089	/	0.015	/	/	0.0089	/	0.015	1650
烧	燃烧装置	SO_2	系数法	0.010	G1	100	0.0063	/	0.010	/	/	0.0063	/	0.010	1650
/// -		NOx		0.096	G1	100	0.0584	/	0.096	/	/	0.0584	/	0.096	1650
木加工	厂房二木加	颗粒物	系数法	1.717	G2	65	0.3382	2.82	1.116	布袋除尘器	99	0.0034	0.03	0.011	3300
	工设备	2011-124	.4.220.24		厂房二 2F	/	0.1821	/	0.601	沉降	80	0.0364	/	0.120	3300
油磨	厂房二油磨	颗粒物	系数法	63.871	G3	90	17.4194	334.99	57.484	水帘柜	85	2.6129	50.25	8.623	3300
IDAH	设备	271-124	.4.294.24		厂房二 4F	/	1.9355	/	6.387	沉降	80	0.3871	/	1.277	3300

			Je}- 800 →	36 -> 41. E		16 # 36	Ī	· 生情况		治理措施			排放情况		Lough
工序	装置	污染物	核算方 法	总产生量 t/a	污染源	收集效 率%	产生速率	产生浓度	产生量	工艺	处理效	排放速	排放浓度	排放量 t/a	排放时 间 h
							kg/h	mg/m ³	t/a		率%	率 kg/h	mg/m ³		
贴绵	厂房二喷胶	VOCs	系数法	0.198	G4	30	0.0180	1.20	0.059	活性炭吸附	50	0.0090	0.60	0.030	3300
VHAR	设备		713212	0.170	厂房二 5F	/	0.0420	/	0.139	/	/	0.0420	/	0.139	3300
拼板、冷压	厂房二拼板	VOCs	系数法	0.136	G4	90	0.0372	2.48	0.123	活性炭吸附	50	0.0186	1.24	0.061	3300
17/1/2001/17/20	机、冷压机		NX14	0.130	厂房二 1F	/	0.0041	/	0.014	/	/	0.0041	/	0.014	3300
木磨	厂房二木磨	颗粒物	系数法	21.290	G5	90	5.8065	55.83	19.161	水帘柜	85	0.8710	8.37	2.874	3300
小店	设备	本火 4 至 1 次 J	小双位	21.270	厂房二 3F	/	0.6452	/	2.129	沉降	80	0.1290	/	0.426	3300
木工开料	厂房二木工	颗粒物	系数法	0.796	G6	65	0.1567	2.61	0.517	布袋除尘器	99	0.0016	0.03	0.005	3300
水土川村	开料设备	本央不至120	水 数位	0.790	厂房二 1F	/	0.0844	/	0.278	沉降	80	0.0169	/	0.056	3300
		颗粒物	系数法	12.367	G7	90	2.7374	/	11.130	二级水喷淋+干式过滤+ 沸石转轮+脱附+催化燃 烧	99.6	0.0109	/	0.045	4066
					厂房三 4F	/	0.3042	/	1.237	/	/	0.3042	/	1.237	4066
油性漆调 漆、喷底 漆、烘干、	厂房三调漆 室、喷底漆 房、烘干房	VOCs	系数法	21.114	G7	90	6.9061	/	19.002	二级水喷淋+干式过滤+ 沸石转轮+脱附+催化燃 烧	90	0.6906	/	1.900	2752
喷枪清洗	//1 / /// / ///				厂房三 4F	/	0.7673	/	2.111	/	/	0.7673	/	2.111	2752
		二甲苯	系数法	3.091	G7	90	1.0530	/	2.782	二级水喷淋+干式过滤+ 沸石转轮+脱附+催化燃 烧	90	0.1053	/	0.278	2642
					厂房三 4F	/	0.1170	/	0.309	/	/	0.1170	/	0.309	2642
		颗粒物	系数法	5.607	G7	80	1.5177	/	4.486	二级水喷淋+干式过滤+ 沸石转轮+脱附+催化燃 烧	99.6	0.0061	/	0.018	2956
					厂房三 4F	/	0.3794	/	1.121	/	/	0.3794	/	1.121	2956
油性漆喷面漆	厂房三喷面 漆房	VOCs	系数法	1.980	G7	80	0.5727	/	1.584	二级水喷淋+干式过滤+ 沸石转轮+脱附+催化燃 烧	90	0.0573	/	0.158	2765
					厂房三 4F	/	0.1432	/	0.396	/	/	0.1432	/	0.396	2765
		二甲苯	系数法	0.249	G7	80	0.0720	/	0.199	二级水喷淋+干式过滤+ 沸石转轮+脱附+催化燃 烧	90	0.0072	/	0.020	2765
					厂房三 4F	/	0.0180	/	0.050	/	/	0.0180	/	0.050	2765
- 天	厂房三催化	颗粒物	系数法	0.015	G7	100	0.0089	/	0.015	/	/	0.0089	/	0.015	1650
J\166 \M	/ /// 一准化	SO_2	小双位	0.010	G7	100	0.0063	/	0.010	/	/	0.0063	/	0.010	1650

			Je)- 800-→	36 -3-41. E		16 84 26		生情况		治理措施			排放情况		排放时
工序	装置	污染物	核算方法	总产生量 t/a	污染源	收集效 率%	产生速率	产生浓度	产生量	工艺	处理效	排放速	排放浓度 mg/m ³	作分量 4/2	排放的 间 h
			12	t/a		李70	kg/h	mg/m ³	t/a	工乙	率%	率 kg/h	mg/m ³	非双里 Ua	P] II
烧	燃烧装置	NO_x		0.096	G7	100	0.0584	/	0.096	/	/	0.0584	/	0.096	1650
木加工	厂房三木加	颗粒物	系数法	1.717	G8	65	0.3382	2.82	1.116	布袋除尘器	99	0.0034	0.03	0.011	3300
小加工	工设备	和八个生 17月	尔奴仏	1./1/	厂房三 2F	/	0.1821	/	0.601	沉降	80	0.0364	/	0.120	3300
油磨	厂房三油磨	颗粒物	系数法	63.871	G9	90	17.4194	167.49	57.484	水帘柜	85	2.6129	25.12	8.623	3300
佃店	设备	4火4至1次	水蚁位	03.671	厂房三 4F	/	1.9355	/	6.387	沉降	80	0.3871	/	1.277	3300
贴绵	厂房三喷胶	VOCs	系数法	0.198	G10	30	0.0180	1.20	0.059	活性炭吸附	50	0.0090	0.60	0.030	3300
州却	设备	vocs	水蚁位	0.170	厂房三 5F	/	0.0420	/	0.139	/	/	0.0420	/	0.139	3300
拼板、冷压	厂房三拼板	VOCs	系数法	0.136	G10	90	0.0372	2.48	0.123	活性炭吸附	50	0.0186	1.24	0.061	3300
37/42/17/12	机、冷压机	VOCS	小双位	0.130	厂房三 1F	/	0.0041	/	0.014	/	/	0.0041	/	0.014	3300
木磨	厂房三木磨	颗粒物	系数法	21.290	G11	90	5.8065	55.83	19.161	水帘柜	85	0.8710	8.37	2.874	3300
小店	设备	4火4至1次	水蚁位	21.290	厂房三 3F	/	0.6452	/	2.129	沉降	80	0.1290	/	0.426	3300
木工开料	厂房三木工	颗粒物	系数法	0.796	G12	65	0.1567	2.61	0.517	布袋除尘器	99	0.0016	0.03	0.005	3300
水エバヤ	开料设备	4火4至1次	水蚁位	0.790	厂房三 1F	/	0.0844	/	0.278	沉降	80	0.0169	/	0.056	3300
UV 漆喷		颗粒物	系数法	28.800	G13	95	12.9133	269.03	27.360	过滤棉+水喷淋+干式过滤+活性炭吸附	99.8	0.0258	0.54	0.055	2119
漆、固化	厂房二 UV				厂房二 4F	/	0.6796	/	1.440	/	/	0.6796	/	1.440	2119
(不含调 漆)	喷漆线	VOCs	系数法	5.378	G13	95	2.4278	50.58	5.109	过滤棉+水喷淋+干式过滤+活性炭吸附	55	1.0925	22.76	2.299	2104
					厂房二 4F	/	0.1278	/	0.269	/	/	0.1278	/	0.269	2104
贴绵	厂房四喷胶	VOCs	系数法	0.198	G14	30	0.0180	6.00	0.059	活性炭吸附	50	0.0090	3.00	0.030	3300
州口却	设备	VOCS	尔奴仏	0.196	厂房四 3F	/	0.0420	/	0.139	/	/	0.0420	/	0.139	3300
抛光	抛光机	颗粒物	系数法	0.613	/	65	0.1208	/	0.399	水帘柜	85	0.0181	/	0.060	3300
1/4/6	1/4/1/1	和八个生 17月	尔奴仏	0.013	厂房三 1F	/	0.0832	/	0.274	沉降	80	0.0166	/	0.055	3300
				0.495	厂房二 1F	/	0.1499	/	0.495	沉降	80	0.0300	/	0.099	3300
机加工	机加工设备	颗粒物	系数法	0.495	厂房三 1F	/	0.1499	/	0.495	沉降	80	0.0300	/	0.099	3300
				0.495	厂房四 1F	/	0.1499	/	0.495	沉降	80	0.0300	/	0.099	3300
				0.034	厂房二 1F	/	0.0102	/	0.034	/	/	0.0102	/	0.034	3300
焊接	焊机	颗粒物	系数法	0.034	厂房三 1F	/	0.0102	/	0.034	/	/	0.0102	/	0.034	3300
				0.034	厂房四 1F	/	0.0102	/	0.034	/	/	0.0102	/	0.034	3300
		颗粒物			`		1.4273	23.79	5.220	/	/	0.0146	0.24	0.036	2434
各排气筒		VOCs					2.6140	43.57	8.017	/	/	0.2614	4.36	0.802	3067
小计	有组织	二甲苯	/	/	G1	/	0.3750	6.25	0.994	/	/	0.0375	0.63	0.099	2650
2.11		SO ₂]				0.0063	0.10	0.010	/	/	0.0063	0.10	0.010	1650
		NO_x	1				0.0584	0.97	0.096	/	/	0.0584	0.97	0.096	1650

大字 大字 大字 大字 大字 大字 大字 大字	工艺	0.0034 0.03 2.6129 50.25 0.0276 1.84 0.8710 8.37 0.0016 0.03 0.0260 0.19 0.7479 5.34 0.1125 0.80 0.0063 0.04 0.0584 0.42 0.0034 0.03 2.6129 25.12	排放量 t/a 间 0.011 330 8.623 330 0.091 330 2.874 330 0.005 330 0.077 29 2.059 273 0.298 263 0.010 163 0.096 163 0.011 330 8.623 330
下海地物 G2 0.3382 2.82 1.116	上乙 率% /	0.0034 0.03 2.6129 50.25 0.0276 1.84 0.8710 8.37 0.0016 0.03 0.0260 0.19 0.7479 5.34 0.1125 0.80 0.0063 0.04 0.0584 0.42 0.0034 0.03 2.6129 25.12	0.011 330 8.623 330 0.091 330 2.874 330 0.005 330 0.077 29 2.059 273 0.298 263 0.010 163 0.096 163 0.011 330
 颗粒物 VOCs 颗粒物 原数物 原数物 の0.0551 3.68 0.182 5.8065 55.83 19.161 颗粒物 の1.567 0.1567 0.1567 0.1567 0.15631 4.2641 30.46 15.631 7.4788 53.42 20.586 二甲苯 SO2 NOx 颗粒物 G8 0.3382 2.82 1.116 		2.6129 50.25 0.0276 1.84 0.8710 8.37 0.0016 0.03 0.0260 0.19 0.7479 5.34 0.1125 0.80 0.0063 0.04 0.0584 0.42 0.0034 0.03 2.6129 25.12	8.623 330 0.091 330 2.874 33 0.005 330 0.077 29° 2.059 27° 0.298 26° 0.010 16° 0.096 16° 0.011 330
VOCs G4 0.0551 3.68 0.182 颗粒物 G5 5.8065 55.83 19.161 颗粒物 0.1567 2.61 0.517 颗粒物 4.2641 30.46 15.631 VOCs 7.4788 53.42 20.586 二甲苯 67 1.1250 8.04 2.981 SO2 0.0063 0.04 0.010 NOx 0.0584 0.42 0.096 颗粒物 G8 0.3382 2.82 1.116		0.0276 1.84 0.8710 8.37 0.0016 0.03 0.0260 0.19 0.7479 5.34 0.1125 0.80 0.0063 0.04 0.0584 0.42 0.0034 0.03 2.6129 25.12	0.091 330 2.874 330 0.005 330 0.077 29° 2.059 27° 0.298 26° 0.010 16° 0.096 16° 0.011 330
照粒物 颗粒物 颗粒物 VOCs 二甲苯 SO ₂ NO _x 颗粒物 G6 G7 5.8065 55.83 19.161 0.1567 2.61 0.517 4.2641 30.46 15.631 7.4788 53.42 20.586 1.1250 8.04 2.981 0.0063 0.04 0.010 0.0584 0.42 0.096 颗粒物 G8 0.3382 2.82 1.116		0.8710 8.37 0.0016 0.03 0.0260 0.19 0.7479 5.34 0.1125 0.80 0.0063 0.04 0.0584 0.42 0.0034 0.03 2.6129 25.12	2.874 330 0.005 33 0.077 29° 2.059 27° 0.298 26° 0.010 16° 0.096 16° 0.011 330
颗粒物 G6 0.1567 2.61 0.517 颗粒物 4.2641 30.46 15.631 VOCs 7.4788 53.42 20.586 二甲苯 1.1250 8.04 2.981 SO2 0.0063 0.04 0.010 NOx 0.0584 0.42 0.096 颗粒物 G8 0.3382 2.82 1.116		0.0016 0.03 0.0260 0.19 0.7479 5.34 0.1125 0.80 0.0063 0.04 0.0584 0.42 0.0034 0.03 2.6129 25.12	0.005 330 0.077 29 2.059 27: 0.298 26: 0.010 16: 0.096 16: 0.011 330
颗粒物 4.2641 30.46 15.631 VOCs 7.4788 53.42 20.586 二甲苯 1.1250 8.04 2.981 SO2 0.0063 0.04 0.010 NOx 0.0584 0.42 0.096 颗粒物 G8 0.3382 2.82 1.116		0.0260 0.19 0.7479 5.34 0.1125 0.80 0.0063 0.04 0.0584 0.42 0.0034 0.03 2.6129 25.12	0.077 29° 2.059 27° 0.298 26° 0.010 16° 0.096 16° 0.011 330°
VOCs 7.4788 53.42 20.586 二甲苯 1.1250 8.04 2.981 SO2 0.0063 0.04 0.010 NOx 0.0584 0.42 0.096 颗粒物 G8 0.3382 2.82 1.116		0.7479 5.34 0.1125 0.80 0.0063 0.04 0.0584 0.42 0.0034 0.03 2.6129 25.12	2.059 275 0.298 265 0.010 165 0.096 165 0.011 336
二甲苯 G7 1.1250 8.04 2.981 SO2 0.0063 0.04 0.010 NOx 0.0584 0.42 0.096 颗粒物 G8 0.3382 2.82 1.116		0.1125 0.80 0.0063 0.04 0.0584 0.42 0.0034 0.03 2.6129 25.12	0.298 26: 0.010 16: 0.096 16: 0.011 330:
SO2 0.0063 0.04 0.010 NOx 0.0584 0.42 0.096 颗粒物 G8 0.3382 2.82 1.116	/ / / / / / / / / / / / / / / / / / /	0.0063 0.04 0.0584 0.42 0.0034 0.03 2.6129 25.12	0.010 165 0.096 165 0.011 330
NOx 0.0584 0.42 0.096 颗粒物 G8 0.3382 2.82 1.116	/ / / / / / / / /	0.0584 0.42 0.0034 0.03 2.6129 25.12	0.096 163 0.011 330
颗粒物 G8 0.3382 2.82 1.116	/ / / / / / / / /	0.0034 0.03 2.6129 25.12	0.011 330
	/ / / / /	2.6129 25.12	
	/ /		8.623 330
	/ /	0.00=4	
VOCs G10 0.0551 3.68 0.182		0.0276 1.84	0.091 330
颗粒物 G11 5.8065 55.83 19.161	/ /	0.8710 8.37	2.874 330
颗粒物 G12 0.1567 2.61 0.517	/	0.0016 0.03	0.005 330
颗粒物 G13 12.9133 269.03 27.360 G13	/ /	0.0258 0.54	0.055 21
VOCs 2.4278 50.58 5.109		1.0925 22.76	2.299 210
VOCs G14 0.0180 6.00 0.059	/ /	0.0090 3.00	0.030 330
颗粒物	/ /	0.0571 /	0.188 330
VOCs 0.0041 / 0.014	/ /	0.0041 /	0.014 330
颗粒物	/ /	0.0364 /	0.120 330
颗粒物 「房二 3F 0.6452 / 2.129	/	0.1290 /	0.426 330
颗粒物 2.8430 / 8.613	/	1.2946 /	3.503 270
VOCs 「房二 4F 0.4447 / 1.233	/ /	0.4447 /	1.233 27
_ 二甲苯	/ /	0.0450 /	0.120 265
各楼层小	/ /	0.0420 /	0.139 330
百怪层小 无组织 颗粒物 / / D / 0.3276 / 1.081	/ /	0.0737 /	0.243 330
VOCs	/ /	0.0041 /	0.014 330
類粒物 「房三 2F 0.1821 / 0.601	/ /	0.0364 /	0.120 330
颗粒物	/ /	0.1290 /	0.426 330
颗粒物 2.6191 / 8.745	/ /	1.0707 /	3.636 339
VOCs	/ /	0.9105 /	2.507 275
二甲苯 0.1350 / 0.359	/ /	0.1350 /	0.359 265
VOCs	/ /	0.0420 /	0.139 330
颗粒物	/ /	0.0402 /	0.133 330

			按每十	水		ル無米	<u> </u>	生情况		治理措施			排放情况		排放时
工序	装置	污染物	核算方法	总产生量 t/a	污染源	收集效 率%	产生速率 kg/h	产生浓度 mg/m ³	产生量 t/a	工艺	处理效 率%	排放速 率 kg/h	排放浓度 mg/m³	排放量 t/a	肝及的 间 h
		VOCs			厂房四 3F		0.0420	/	0.139	/	/	0.0420	/	0.139	3300
		颗粒物					66.0462	/	204.767	/	/	7.0440	/	23.194	3293
		VOCs					12.6489	/	34.135	/	/	2.1659	/	5.371	2480
	有组织	二甲苯	/	/	/	/	1.5000	/	3.975	/	/	0.1500	/	0.398	2650
全厂小计		SO_2					0.0125	/	0.021	/	/	0.0125	/	0.021	1650
土)小川		NOx					0.1169	/	0.193	/	/	0.1169	/	0.193	1650
		颗粒物					7.8488	/	25.235	/	/	2.8671	/	8.795	3068
	无组织	VOCs	/	/	/	/	1.4895	/	4.183	/	/	1.4895	/	4.183	2809
		二甲苯					0.1800	/	0.479	/	/	0.1800	/	0.479	2659
		颗粒物					73.8950	/	230.002	/	/	9.9112	/	31.989	3228
		VOCs					14.1384	/	38.319	/	/	3.6554	/	9.554	2614
合计	/	二甲苯	/	/	/	/	1.6800	/	4.454	/	/	0.3300	/	0.876	2655
		SO_2					0.0125	/	0.021	/	/	0.0125	/	0.021	1650
		NOx					0.1169	/	0.193	/	/	0.1169	/	0.193	1650

3.6.2.13 等效排气筒

根据广东省地方标准《大气污染物排放标准限值》(DB44/27-2001)和广东省地方标准《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010),两个排放相同污染物的排气筒,若其距离小于其几何高度之和,应合并视为一根等效排气筒。

根据前文分析,项目排气筒设置情况如下表所示:

排气筒编号 废气名称 排气筒高度 主要污染物 喷漆废气、燃烧废气 颗粒物、VOCs、二甲苯、SO2、NOx G1 40m G2 木工粉尘 颗粒物 40m 打磨粉尘 颗粒物 40m G3 G4 40m 胶水废气 **VOCs** 打磨粉尘 40m G5 颗粒物 **G**6 木工粉尘 颗粒物 40m 喷漆废气、燃烧废气 颗粒物、VOCs、二甲苯、SO2、NOx 40m G7 木工粉尘 颗粒物 40m G8 颗粒物 G9 打磨粉尘 40m G10 胶水废气 **VOCs** 40m 40m G11 打磨粉尘 颗粒物 颗粒物 40m G12 木工粉尘 G13 喷漆废气 颗粒物、VOCs 40m G14 胶水废气、危废间废气 40m **VOCs**

表3.6-22 项目生产废气排气筒设置情况一览表

两个排放相同污染物的排气筒,若其距离小于其几何高度之和,应合并视为一根等效排气筒;若有三根以上的近距离排气筒,且排放同种污染物时,应以前两根的等效排气筒,依次与第三,第四根排气筒取等效值。项目排气筒之间的距离如下表所示:

距离	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12	G13
G1	/	/	/	/	/	/	/	/	/	/	/	/	/
G2	81	/	/	/	/	/	/	/	/	/	/	/	/
G3	70	12	/	/	/	/	/	/	/	/	/	/	/
G4	51	31	20	/	/	/	/	/	/	/	/	/	/
G5	18	67	57	37	/	/	/	/	/	/	/	/	/
G6	13	78	66	48	11	/	/	/	/	/	/	/	/
G7	95	83	82	84	97	104	/	/	/	/	/	/	/
G8	94	55	56	65	91	99	34	/	/	/	/	/	/
G9	83	55	54	59	81	89	29	13	/	/	/	/	/
G10	100	91	90	92	104	109	10	41	36	/	/	/	/
G11	45	87	78	66	56	57	57	71	58	61	/	/	/
G12	43	93	83	71	56	55	65	79	66	69	8	/	/
G13	9	72	60	42	13	15	90	87	76	96	45	45	/
G14	176	99	110	129	166	175	122	93	106	125	164	171	167

表3.6-23 项目工艺废气排气筒之间的距离一览表排气筒布局情况

根据上表,本项目排放颗粒物的排气筒中,G1、G2、G3、G5、G6、G7、G8、G9、G11、G12、G13 排气筒之间相距小于两排气筒的几何高度之和,排放 VOCs 的排气筒中,G1、G4、G13 排气筒之间相距小于两排气筒的几何高度之和,G7、G10 排气筒之

间相距小于两排气筒的几何高度之和,需进行等效。等效情况如下表。

表3.6-24 项目等效排气筒达标判断一览表

等效排气	上海台地	排气筒		污染物		kg/h)	
筒编号	点源名称	高度/m	颗粒物	VOCs	二甲苯	SO ₂	NOx
	G1	40	0.0146	/	/	/	/
	G2	40	0.0034	/	/	/	/
	G3	40	2.6129	/	/	/	/
	G5	40	0.8710	/	/	/	/
	G6	40	0.0016	/	/	/	/
	G7	40	0.0260	/	/	/	/
a .	G8	40	0.0034	/	/	/	/
G-A	G9	40	2.6129	/	/	/	/
	G11	40	0.8710	/	/	/	/
	G12	40	0.0016	/	/	/	/
	G13	40	0.0258	/	/	/	/
	等效排气筒	40	7.0440	/	/	/	/
	速率限值	/	16	/	/	/	/
	达标情况	/	达标	/	/	/	/
	G1	40	/	0.2614	0.0375	0.0063	0.0584
	G4	40	/	0.0276	/	/	/
G 5	G13	40	/	1.0925	/	/	/
G-B	等效排气筒	40	/	1.3815	/	/	/
	速率限值	/	/	1.45	/	/	/
	达标情况	/	/	达标	/	/	/
	G7	40	/	0.7479	0.1125	0.0063	0.0584
	G10	40	/	0.0276	/	/	/
G-C	等效排气筒	40	/	0.7755	/	/	/
	速率限值	/	/	1.45	/	/	/
	达标情况	/	/	达标	/	/	/

3.6.2.14 非正常排放

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)中的非正常排放指生产过程中设备检修、工艺设备运转异常等非正常工况下的污染物排放,以及污染物排放控制措施达不到应有效率等情况下的排放。

①废气治理设施全部失效

本项目喷涂线均必须在污染治理设施(风机)开启,使设备保持负压且满足负压监测值的情况下,才可以启动设备,通入气体或添加原料,因此,不存在设备启停的非正常工况,本次只针对污染治理设施失效计算事故排放源强。本项目所有废气治理设施均配有备用设备,当主设备发生故障时会自动启动备用设备,并会传递故障信号到监控室,安排维修。因此,事故排放工况取 1 次,持续 1 小时。

本次非正常工况废气源强核算,按最不利情况,假设项目废气治理设施全部失效,

各排气筒废气排放情况如下表所示。

表3.6-25 项目非正常排放参数表

非正常排放源	非正常排 放原因	污染物	非正常排放 速率/(kg/h)	非正常排放 浓度/ (mg/m³)	单次持 续时间 /h	年发生 频次/ 次	非正常 排放量 (kg)
		颗粒物	1.4273	23.79	1	1	1.4273
G1		VOCs	2.6140	43.57	1	1	2.6140
		二甲苯	0.3750	6.25	1	1	0.3750
G2		颗粒物	0.3382	2.82	1	1	0.3382
G3		颗粒物	17.4194	334.99	1	1	17.4194
G4		VOCs	0.0551	3.68	1	1	0.0551
G5		颗粒物	5.8065	55.83	1	1	5.8065
G6		颗粒物	0.1567	2.61	1	1	0.1567
	废气治理	颗粒物	4.2641	30.46	1	1	4.2641
G7	设施失效	VOCs	7.4788	53.42	1	1	7.4788
	以旭大双	二甲苯	1.1250	8.04	1	1	1.1250
G8		颗粒物	0.3382	2.82	1	1	0.3382
G9		颗粒物	17.4194	167.49	1	1	17.4194
G10		VOCs	0.0551	3.68	1	1	0.0551
G11		颗粒物	5.8065	55.83	1	1	5.8065
G12		颗粒物	0.1567	2.61	1	1	0.1567
C12		颗粒物	12.9133	269.03	1	1	12.9133
G13		VOCs	2.4278	50.58	1	1	2.4278
G14		VOCs	0.0180	6.00	1	1	0.0180

3.6.3 项目噪声污染源强分析及防治措施

本项目产生的噪声主要来自生产过程中主体工程设备运转时产生的噪声,以及辅助设备如空压机、风机等运转时产生的噪声,其噪声级约为 60~90dB(A)。

项目生产设备噪声源均安置在厂房内,废气处理设备安装在楼顶(布袋除尘安装于一楼),噪声影响对象主要为车间工作人员。本项目噪声源强及拟采取的相应措施如下表。

表3.6-26 本项目室内噪声源强及措施一览表

建筑物	生产车间	主派 5 4	设备数量	声源源强	去海粉料排放	2	2间相	对位置/m		距室内边界	距离/m		二年中原
名称	生产年间	声源名称	/台	声功率级/dB(A)	声源控制措施	X	Y	Z	东	南	西	北	运行时段
		带锯	1	85									
		截料锯	5	85									
		下轴纵锯机	5	85]								
		平刨	2	85]								
		双面刨	2	85]								
		四面刨	1	85]								
		梳齿机	1	75									
		齿接机	1	75]								
		推台锯	2	85									
		直线修边机	2	75									
		摩天轮拼板机	4	75									
		模块四面拼板机	1	75									
		定厚砂光机	2	85									
	1F木加	刨砂机	1	85	选用低噪设备、减								
	工车间	砂光机	1	85	远用似喉以笛、 <u>侧</u> 震	40	-18	2	2	2	10	2	8:00-18:00
	工十四	空压机	2	85	灰								
厂房二		锯床	1	85									
		开料机	2	85									
		铣床	2	75									
		钻床	1	75									
		钻孔攻丝机	3	75									
		冲床	2	85									
		拉丝机	1	75									
		砂轮机(磨钻头用)	1	85									
		加工中心	2	75									
		车床	2	75									
		线切割机	4	80									
		焊机	5	75									
		冷压机	2	75									
		窜动砂带机	2	85									
	2F开料	立式单轴锣机	5	80	选用低噪设备、减	40	-18	11	2	2	10	2	8:00-18:00
	车间	加工中心	5	75	震	40	-10	11	2	∠	10	2	0.00-18:00
		地锣	5	80									

建筑物	生产车间	声源名称	设备数量		声源控制措施	2	空间相	对位置/m		距室内边界	距离/m		运行时段
名称	生)手间		/台	声功率级/dB(A)	产奶3工門1月加	X	Y	Z	东	南	西	北	色11时权
		底贯机	1	80									
		吊锣	5	80									
		仿型机	1	75									
		砂光机	2	85									
		砂带机	2	85									
		气鼓砂光机	2	85									
		数控斜接机	1	75									
		数控车床	1	75									
		数控出榫机	2	75									
		数控榫头机	2	75									
		数控榫槽机	2	75									
		榫眼机	2	75									
		数控燕尾榫机	2	75									
		数控加工中心	1	75									
		铣型机	1	75									
		四轴数控	1	75									
		台钻	10	75									
		木工铣床	2	75									
		推台锯	6	85									
		出榫机	5	75									
		小五轴加工中心	2	75									
		斜榫机	3	75									
		圆棒单砂机	1	85									
	3F木磨 车间	手磨机	10	80	选用低噪设备、减 震	40	-18	16	2	20	80	2	8:00-18:00
		手磨机	6	80									
		底漆调漆房	1	75									
		面漆调漆房	1	75									
		底漆房	1	75									
	4F喷漆	底漆房喷枪	1	75	选用低噪设备、减	40	-18	22	5	2	15	2	8:00-18:00
	车间	底漆房水帘柜	1	75	震	40	-18	22	3	2	15	2	8:00-18:00
		底漆烘干房	1	75									
		面漆房	1	75									
		面漆房喷枪	1	75									
		面漆房水帘柜	1	75	1								

建筑物	生产车间	声源名称	设备数量		- 声源控制措施		2间相2	对位置/m		距室内边界			运行时段
名称	工)平同		/台	声功率级/dB(A)	一次3工中11日7四	X	Y	Z	东	南	西	北	色加州权
		面漆烘干房	1	75									
		UV底漆喷涂线	1	75									
		UV面漆喷涂线	1	75									
	_	带锯	1	85									
		平刨	1	85									
	_	推台锯	1	85									
		台式钻床	1	75									
		台锣	1	80									
		切割机	1	80									
		截断机	3	65									
		搅拌储棉箱	1	70									
		吸棉充棉机	1	70									
		衣车	14	65									
		平车	4	65									
	皮具车间—	同步车	14	65		40	-18	28	40	2	25	2	8:00-18:00
	及共中的	大线车	1	65									
		锁边机	2	65									
		双针大绒机	1	65									
		平板缝纫机	1	65									
		平缝双针机	1	65									
		测皮机	1	65									
		量布机	1	65									
		真皮冲孔机	1	65									
		电脑车	1	65									
		高周波机	1	65									
		铲皮机	1	65									
		带锯	1	85									
		截料锯	5	85									
		下轴纵锯机	5	85									
	1F木加	平刨	2	85	选用低噪设备、减								
厂房三	工车间 —	双面刨	2	85	远用似噤以奋、飒 震	37	35	2	2	2	10	2	8:00-18:00
	工手門 -	四面刨	1	85	辰								
		梳齿机	1	75]								
		齿接机	1	75]							1	
		推台锯	2	85	1								

筑物 生产车间	声源名称	设备数量	声源源强	声源控制措施	2	空间相	对位置/m		距室内边界	距离/m		运行时段
3称 生产年间	产源名称	/台	声功率级/dB(A)	一一声源控制有地	X	Y	Z	东	南	西	北	- 运行则权
	直线修边机	2	75									
	摩天轮拼板机	4	75									
	模块四面拼板机	1	75									
	定厚砂光机	2	85									
	刨砂机	1	85									
	砂光机	1	85									
	空压机	2	85									
	锯床	1	85									
	开料机	2	70									
	铣床	2	75									
	钻床	1	75									
	钻孔攻丝机	3	75									
	冲床	2	85									
	拉丝机	1	75									
	砂轮机(磨钻头用)	1	85									
	湿式一体抛光机	1	85									
	CNC	2	75									
	车床	2	75									
	线切割机	4	80									
	焊机	5	75									
	冷压机	2	75									
	窜动砂带机	2	85									
	立式单轴锣机	5	80									
	加工中心	4	75									
	地锣	5	80									
	底贯机	1	80									
	吊锣	5	80									
2F开料	仿型机	1	75	选用低噪设备、减	37	35	11	2	2	10	2	8:00-18:00
车间	砂光机	2	85	震	31	33	11	2	2	10	2	8.00-18.00
	砂带机	2	85									
	气鼓砂光机	2	85									
	数控斜接机	1	75									
	数控车床	1	75									
	数控出榫机	2	75									
	数控榫头机	2	75]								

物 生产车间	声源名称	设备数量		声源控制措施	3	空间相	付位置/m		距室内边界	距离/m		运行时
: 生厂手		/台	声功率级/dB(A)	一一一次红色的有心	X	Y	Z	东	南	西	北	_ Æ11 m
	数控榫槽机	2	75									
	榫眼机	2	75									
	数控燕尾榫机	2	75									
	数控加工中心	1	75									
	铣型机	1	75									
	四轴数控	1	75									
	台钻	10	75									
	木工铣床	2	75									
	推台锯	6	85									
	出榫机	5	75									
	小五轴加工中心	2	75									
	斜榫机	3	75									
	圆棒单砂机	1	85									
3F木磨 车间	手磨机	10	80	选用低噪设备、减 震	37	35	16	2	2	80	20	8:00-18
	手磨机	6	80									
	底漆调漆房	1	75									
	面漆调漆房	1	75									
	底漆房	2	75									
4F喷漆 —	底漆房喷枪	3	75	- 选用低噪设备、减								
年间 —	底漆房水帘柜	2	75	远用似喋叹奋、飒 震	37	35	22	2	2	5	2	8:00-18
十四	底漆烘干房	1	75	灰								
	面漆房	3	75									
	面漆房喷枪	3	75									
	面漆房水帘柜	3	75									
	面漆烘干房	1	75									
	带锯	1	85									
	平刨	1	85									
	推台锯	1	85									
5F软体、	台式钻床	1	75	 -选用低噪设备、减								
皮具车间一	台锣	1	80	远用	37	35	28	40	2	25	2	8:00-18
及六十四	切割机	1	80	灰								
	截断机	3	65]							1	
	搅拌储棉箱	1	70]								
	吸棉充棉机	1	70									

建筑物	生产车间	————————— 声源名称	设备数量		声源控制措施		2间相	对位置/m		距室内边界	距离/m		运行时段
名称	工厂干啊		/台	声功率级/dB(A)	→ 40×1±1411日 10F	X	Y	Z	东	南	西	北	色门的权
	_	衣车	14	65									
		平车	4	65									
		同步车	14	65									
	_	大线车	1	65									
		锁边机	2	65									
		双针大绒机	1	65									
		平板缝纫机	1	65									
		平缝双针机	1	65									
		测皮机	1	65									
		量布机	1	65									
	=	真皮冲孔机	1	65									
		电脑车	1	65									
		高周波机	1	65									
	-	铲皮机	1	65									
		锯床	1	85									
		开料机	2	70									
	-	铣床	2	75									
		钻床	1	75									
		钻孔攻丝机	3	75									
	1F机加	冲床	2	85	选用低噪设备、减	-67	5	2	5	5	5	5	8:00-18:00
	工车间	拉丝机	1	75	震	-07	3	2	3	3	3	3	8:00-18:00
	=	砂轮机(磨钻头用)	1	85									
		CNC	2	75									
		车床	2	75									
厂房四	_	线切割机	4	80									
		焊机	5	75									
		带锯	1	85									
		平刨	1	85									
		推台锯	1	85									
	2F软体	台式钻床	1	75	进用优唱:57.夕 试								
	2F	台锣	1	80	选用低噪设备、减 震	-67	5	11	5	5	5	5	8:00-18:00
	半川	切割机	1	80	辰								
		截断机	1	65									
		搅拌储棉箱	1	70									
		吸棉充棉机	1	70									

物业文本园	去海及場	设备数量	声源源强	丰海松州州米	2	2间相	対位置/m		距室内边界	距离/m		二年中年
生产车间 生产车间	声源名称	/台	声功率级/dB(A)	声源控制措施	X	Y	Z	东	南	西	北	运行时段
	衣车	2	65									
	平车	4	65]								
	同步车	14	65									
	大线车	1	65]								
	锁边机	2	65									
	双针大绒机	1	65									
	平板缝纫机	1	65									
	平缝双针机	1	65									
	测皮机	1	65									
	量布机	1	65]								
	真皮冲孔机	1	65]								
	带锯	1	85									
	平刨	1	85									
	推台锯	1	85									
	台式钻床	1	75									
	台锣	1	80									
	切割机	1	80]								
	截断机	1	65]								
	搅拌储棉箱	1	70]								
	吸棉充棉机	1	70]								
3F软体	衣车	2	65	选用低噪设备、减	-67	5	16	_	5	5	5	0.00 10.00
车间	平车	4	65	震	-67	3	10	5	3	3	3	8:00-18:00
	同步车	14	65]								
	大线车	1	65]								
	锁边机	2	65									
	双针大绒机	1	65]								
	平板缝纫机	1	65									
	平缝双针机	1	65									
	测皮机	1	65	1								
	量布机	1	65	1								
	真皮冲孔机	1	65									

备注:将每条生产线所在区域看作一个整体,空间相对位置为所在区域的中心。

表3.6-27 本项目室外噪声源强及措施一览表

声源名称	数量	声功率级/dB(A)	声源控制措施		空间相对位置/m		运行时段
产源石标	双 里	产为平级/db(A)	广·孙\$3王\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X	Y	Z	超打的权
G1排气筒废气处理设施	1	90		91	-22	38	8:00-18:00
G2排气筒废气处理设施	1	90		12	-34	11	8:00-18:00
G3排气筒废气处理设施	1	90		23	-34	22	8:00-18:00
G4排气筒废气处理设施	1	90		43	-34	38	8:00-18:00
G5排气筒废气处理设施	1	90		79	-34	16	8:00-18:00
G6排气筒废气处理设施	1	90		90	-34	2	8:00-18:00
G7排气筒废气处理设施	1	90	设置隔声罩	26	47	38	8:00-18:00
G8排气筒废气处理设施	1	90	以且網尸早	5	21	11	8:00-18:00
G9排气筒废气处理设施	1	90		19	21	22	8:00-18:00
G10排气筒废气处理设施	1	90		26	53	38	8:00-18:00
G11排气筒废气处理设施	1	90		77	21	16	8:00-18:00
G12排气筒废气处理设施	1	90		85	21	2	8:00-18:00
G13排气筒废气处理设施	1	90		82	-22	38	8:00-18:00
G14排气筒废气处理设施	1	90		83	-7	38	8:00-18:00

3.6.4 项目固体废物及防治措施

本项目产生的固体废物主要包括危险废物、一般工业固体废物和生活垃圾。

3.6.4.1 工业固废

- 1、一般工业固废
- (1) 木边角料和布袋收集粉尘

项目对原料板材进行开料、各类木加工等机械加工过程会产生一定量的木边角料,以上边角料产生量约占原材料使用量的8%。项目外购木材使用量33500m ¾a,木材密度为0.8t/m¾则合计26800t/a,因此木边角料产生量约2144t/a。项目生产过程中,木工产生的粉尘通过布袋除尘器收集处理,根据工程分析可知粉尘收集量约为3.234t/a,收集的粉尘定期外卖给回收商。

根据《固体废物分类与代码目录》(生态环境部公告 2024 第 4 号),边角料和布袋收集粉尘属于 SW17 可再生类废物 900-009-S17 废木材。

(2) 喷淋沉渣(金属粉尘、木磨粉尘)

项目"水帘柜"处理金属粉尘、木磨粉尘过程中会收集一定量的喷淋沉渣,根据工程分析,项目喷淋沉渣的收集量约为32.913t/a,收集后定期外卖给回收商。

根据《固体废物分类与代码目录》(生态环境部公告 2024 第 4 号),喷淋沉渣属于 SW59 其他工业固体废物 900-099-S59。

(3) 地面清扫粉尘

项目木工、木磨、五金抛光处理过程中未被收集的粉尘大部分(80%)沉降于房间地面,少量粉尘(20%)通过房间的门窗排放到厂界外,地面清扫粉尘量约为 6.220t/a,收集后定期外卖给回收商。

根据《固体废物分类与代码目录》(生态环境部公告 2024 第 4 号), 地面清扫粉 尘属于 SW59 其他工业固体废物 900-099-S59。

(4) 一般原料废包装物

一般原辅材料用塑料进行包装,因此上述原材料的包装物可按一般固废处置,废普通包装物产生量约为 2t/a。

根据《固体废物分类与代码目录》(生态环境部公告 2024 第 4 号),一般原料废包装物属于废物代码为 SW17 可再生类废物 900-003-S17 废塑料,委托资源回收单位回收利用。

(5) 废布袋

项目木工粉尘使用的脉冲式布袋除尘器处理,为保证良好的处理效果,需定期更换布袋,预计每年需更换两次,每次更换量为0.2吨,即产生量为0.4t/a,收集后定期交由资源回收单位回收处理。

根据《固体废物分类与代码目录》(生态环境部公告 2024 第 4 号),废布袋废物 代码为 SW59 其他工业固体废物 900-009-S59 废过滤材料。

(6) 布料、真皮边角料

项目对原料布料和真皮进行开料、扪皮等过程会产生一定量的边角料,产生量约5t/a,收集后定期外卖给回收商。

根据《固体废物分类与代码目录》(生态环境部公告 2024 第 4 号),布料、真皮边角料属于 SW17 可再生类废物 900-007-S17 废纺织品。

(7) 金属边角料

项目对金属原材料进行开料、加工过程会产生一定量的金属边角料,以上边角料产生量约占原材料使用量的 1%。项目外购金属原材料 280t/a,因此金属边角料产生量约 2.8t/a。

2、危险废物

(1) 废化学品包装桶

项目油漆、固化剂、稀释剂使用过程中会产生一定量的废化学品包装桶(其中油性漆稀释剂包装桶交由供应商回收,不作为固体废物管理),具体如下。

原料名称	年用量(t)	包装规格(kg/桶)	包装桶数量(个)	单个空包装 桶重量(kg)	废化学品包装 桶重量(t)
白乳胶	9.828	25	393	1.5	0.590
水性胶水	11.876	50	238	3.5	0.831
油性底漆	29.108	20	1455	1.3	1.892
油性面漆	20.741	20	1037	1.3	1.348
稀释剂	5.985	200	30	20	0.598
固化剂	24.924	15	1662	0.8	1.329
UV底漆	55.197	20	2760	1.3	3.588
UV面漆	41.623	20	2081	1.3	2.706
UV稀释剂	4.841	20	242	1.3	0.315
异丙醇	1.000	20	50	1.3	0.065
合计	/	/	/	/	11.841

表3.6-28 废化学品包装物产生情况

以上废化学品包装桶属于《国家危险废物名录》(2025年版)中HW49其他废物(危

废代码900-041-49),需委托有相应危险废物处理资质的单位统一处置,其中若白乳胶、水性胶水经鉴别后根据《危险废物鉴别标准》(GB5085.1~7)、《危险废物鉴别技术规范》(HJ 298)等予以判定不属于危险废物,则其包装桶不按危废管理。

(2) 废抹布手套

手工喷漆、喷枪清洗、设备清理、设备维护过程会产生沾染油漆、稀释剂、固化剂、润滑油的废抹布手套,产生量共约 0.5t/a,属于《国家危险废物名录》(2025 年版)中的 HW49 其他废物,代码为 900-041-49,需委托有相应危险废物处理资质的单位统一处置。

(3) 废漆渣

本项目各喷涂线和手工喷漆房内共设有水帘柜用于处理的漆雾,喷漆废气经水帘柜处理后再由离心风机抽至配套的废气处理装置处理,以上水帘柜废水和气旋喷淋塔废水分别经沉淀清渣处理后循环使用,清渣过程会产生废漆渣;项目打磨房使用水帘柜处理油磨产生的颗粒物,喷淋废水经沉淀清渣处理后循环使用,因此会产生一定量的沉渣,沉渣的主要成分为木屑、漆渣等;根据工程分析,水帘柜和旋流喷淋塔沉渣产生量约112.503t/a。

项目油磨过程中未被收集的粉尘大部分(80%)沉降于房间地面,少量粉尘(20%)通过房间的门窗排放到厂界外,地面清扫油磨粉尘量约为10.22t/a。

则废漆渣总产生量为 122.723t/a,属于《国家危险废物名录》(2025 年版)中的 HW12 染料涂料废物,废物代码 900-252-12,需委托有相应危险废物处理资质的单位统一处置。

(4) 废过滤棉

项目废气处理装置设有过滤棉,用于去除 UV 漆漆雾及废气中由喷淋塔带出的水雾,为后续废气处理工序作准备。为保证良好的处理效果,需定期更换,干式过滤器的过滤棉每月需更换一次,每次更换量为 0.5t,UV 喷涂线过滤棉每周更换 1 次,每次更换量为 0.2t,吸附的漆雾量约 27.305t/a,则废过滤棉总产生量为 43.305t/a,属于《国家危险废物名录》(2025 年版)中 HW49 其他废物,废物代码 900-041-49,需委托有相应危险废物处理资质的单位统一处置。

(5) 废活性炭

项目胶水废气和 UV 喷漆废气共采用 4 套"活性炭吸附装置"处理,由于活性炭使用到一定程度会达到吸附饱和,活性炭箱设计参数计算过程详见"6.3.1.2UV 喷漆废气防治措施可行性分析"章节。活性炭年更换量为 36.576t,加上吸附的有机废气 3.022t/a,共产

生废活性炭 39.598t/a,属于《国家危险废物名录》(2025 年版)中的 HW49 其他废物,废物代码 900-039-49,需定期交由有相应资质的单位回收处理。

(6) 废润滑油和废润滑油桶

设备维护时需更换润滑油,产生少量废润滑油和润滑油包装桶,其中废润滑油产生量约为 0.1t/a,废润滑油桶产生量约 0.02t/a (具体见下表),合计 0.12t/a,属于《国家危险废物名录》(2025 年版)中的 HW08 废矿物油与含矿物油废物,废物代码为900-249-08,需委托有相应危险废物处理资质的单位统一处置。

 原料名称
 年用量(t)
 包装方式和规格
 废包装桶数量(个)
 单个空包装桶重量(kg)
 废化学品包装桶重量(t)

 润滑油
 0.2
 200kg/桶
 1
 20
 0.02

表3.6-29 废润滑油桶产生情况一览表

(7) 废沸石

项目喷漆废气采用沸石转轮吸附/脱附处理,沸石转轮内沸石需要定期更换,沸石每5年更换一次,每次更换7吨沸石,则项目废沸石产生量为1.4t/a。

(8) 废催化剂

项目有机废气催化燃烧装置使用催化剂,使用一段时间后会失效,更换产生废催化剂,催化剂使用寿命在 2~3 年。为保障废气治理效果,建设单位在设备检修时对催化剂进行表观检查,更换老化的催化剂,一般 2 年全部更新一次。每台设备每次更换量约 0.5立方米,催化剂密度约 1000kg/m 3,平均 2 年更换一次,项目共有 2 台催化燃烧处理设施,则项目废催化剂产生量为 0.5t/a。

项目危险废物汇总表如下:

							•				
序号	危险废物 名称	危险废 物类别		产生量 (t/a)	产生工序 及装置	形态	主要成分	有害成分	产废 周期	危险 特性	污染防 治措施
1	废化学品 包装桶	HW49	900-041-49	11.841	调漆、喷漆、清洗、 漆、清洗、 胶水使用	固态	沾有油漆、 固化剂、稀 释剂、水性 胶水的铁桶	1457111、 4中	每天	Т	规范收
2	废抹布手 套	HW49	900-041-49	05	调漆、喷漆、清洗、 漆、清洗、 设备清理、 维护	固态	油漆、 <u></u>	1/1 / 32H MZG		T	集, 集, 東 東 京 由 一 版 単 位
3	废漆渣	HW12	900-252-12	122.723	水帘柜、喷 淋塔清渣	液态	漆渣	漆渣	每天	T	处置
4	废过滤棉	HW49	900-041-49	43.305	废气治理 设施	固态	漆渣	漆渣	每月	T	
5	废活性炭	HW49	900-039-49	39.598	废气治理	固态	VOCs	VOCs	1个	T	

表3.6-30 项目危险废物汇总表

序 号	危险废物 名称	危险废 物类别		产生量 (t/a)	产生工序 及装置	形态	主要成分	有害成分	产废 周期	危险 特性	污染防 治措施
					设施				月		
6	废润滑油 和废润滑 油桶		900-249-08	0.120	设备维护	固态、 液态	废润滑油	废润滑油	3个 月	Т	
7	废沸石	HW49	900-039-49	1.4	CO装置	固态	沸石	VOCs	4年	T	
8	废催化剂	HW50	772-007-50	0.5	CO 装置	固态	Pt、Pd	Pt、Pd、 VOCs	2年	Т	
/	合计	/	/	219.986	/	/	/	/	/	/	

3.6.4.2 生活垃圾、餐厨垃圾

本项目员工 800 人,其中 600 人在厂内食宿,根据《社会区域类环境影响评价》(中国环境科学出版社),我国目前城市人均生活垃圾为 0.8~1.5kg/人 d,办公垃圾为 0.5~1.0kg/人 d,本项目员工生活垃圾按平均 1.0kg/人 日计,厨余垃圾(含隔油隔渣池的废油脂)按 0.5kg/人 次计算,项目年工作 330 天,则普通生活垃圾产生量约 264t/a,餐厨垃圾产生量约 99t/a,共 363t/a。建设单位在厂区内分类收集,委托环卫部门每天统一清运。

3.6.4.3 本项目固体废物处理措施汇总

本项目固体废物产生情况及处理措施详见下表。

表3.6-31 本项目固体废物产生情况及处理措施一览表

	种类	产生量(t/a)	类别	代码	排放去向
生活	普通生活垃圾	264	SW64	900-099-S64	由环卫部门集中收集
垃圾	餐厨垃圾	99	SW61	900-002-S61	田外工印门朱竹収朱
	木边角料、布袋收集的粉尘	2147.234	SW59	900-099-S59	外卖给回收商
	喷淋沉渣 (金属粉尘)	32.913	SW59	900-099-S59	外卖给回收商
初几	地面清扫粉尘	6.220	SW59	900-099-S59	外卖给回收商
一般 固废	一般原料废包装物	2	SW17	900-003-S17	外卖给回收商
凹及	布料、真皮边角料	5	SW17	900-007-S17	外卖给回收商
	废布袋	0.4	SW59	900-009-S59	外卖给回收商
	金属边角料	2.8	SW17	900-001-S17	外卖给回收商
	废化学品包装桶	11.841	HW49	900-041-49	
	废抹布手套	0.500	HW49	900-041-49	
	废漆渣	122.723	HW12	900-252-12	
危险	废过滤棉	43.305	HW49	900-041-49	交由有危险废物资质
废物	废活性炭	39.598	HW49	900-039-49	单位处理
	废润滑油和废润滑油桶	0.120	HW08	900-249-08	
	废沸石	1.400	HW49	900-039-49	
	废催化剂	0.5	HW50	772-007-50	
	生活垃圾、餐厨垃圾	363			由环卫部门集中收集
	一般固废	2196.567			外卖给回收商/定期交
合计	双回及	2190.307			由有能力的单位处理
	危险废物	219.986			交由有危险废物资质
	/巴西/汉7/	219.900			单位处理

3.7 总量控制

根据本项目所产生的污染物的具体情况及特征,及《关于印发〈建设项目主要污染物排放总量指标审核及管理暂行办法〉的通知》(环发〔2014〕197号〕和《佛山市人民政府办公室关于印发佛山市排污权有偿使用和交易管理办法的通知》(佛府办〔2020〕19号),大气污染物中纳入总量控制指标为 VOCs; 水污染物中纳入总量控制指标为COD_{Cr}和氨氮。

项目生产废水均不外排,生活污水排放量为 9900m³/a, COD_{Cr} 排放量 0.396t/a, 氨 氮排放量 0.050t/a, 生活污水纳入杏坛污水处理厂集中处理, 则生活污水总量控制指标 计入杏坛污水处理厂的总量控制指标内,本项目无需单独设置水污染物总量控制指标。

根据本项目产生的污染物具体情况,建议实施总量控制的大气污染物指标如下。

类别	项	i目	总量控制指标
		有组织	5.371
	VOCs	无组织	4.183
废气		合计	9.554
	二氧化硫	有组织	0.021
	氮氧化物	有组织	0.193

表 3.8-1 项目总量控制指标汇总表(t/a)

本报告所提出的总量控制指标仅供环保审批部门参考,在核定广东阅生活家居科技有限公司广东阅生活总部基地建设项目总量指标时,应将项目纳入到区域总量平衡中。

4 环境现状调查与评价

4.1 区域环境概况

4.1.1 地理位置

佛山市顺德区位于广东省南部,珠江三角洲腹地中部平原的水网地带。地理坐标为东经 113°1′~113°23′,北纬 22°40′~22°2′。东西长 38.7km,南北长 38km,总面积约 806km²。

本项目位于广东省佛山市顺德区杏坛镇光华村德彦大道 1 号之一,选址位于工业区,所在地块属于工业用地。

4.1.2 地质地形地貌

顺德区地处广东省南部、珠江三角洲中心地带,西北至北向与南海区毗邻,东接番禺区,西南与新会区、鹤山市接壤,东南方与中山市交界,属于西、北江下游的河口湾浅冲积平原,地势西北部稍高,东南略低,平均海拔高程约在 0.7m~2m(珠基)之间,除少数山冈外,其余比较平坦,且地面都在洪水线以下,境内河流交错成网。全区地域中,平原面积 473.2km²,占总面积的 58.7%;河流水面 301.5km²,占总面积的 37.3%;低山丘陵和台地 31.43km²,占总面积的 4%。与全省相比,顺德区平原和水面所占的比例较高,而山地和丘陵所占的比例较低。

顺德区为珠江三角洲冲积平原区内,在北西向断裂构造影响下,区内地势由西北向东南倾斜。大部分地区平均海拔 0.2~2.0 米,平原上散布多处残丘,以大良街道南面的顺峰山为区内最高峰,海拔 172.50 米。

综上所述,本建设项目场地地势平坦,地貌类型较单一,地形地貌条件简单。

4.1.3 气候特征

本项目所在地属珠江三角洲冲积平原,地势平坦,由西江、北江泥沙长期淤积而成,平均海拔约 1.4m(黄海高程系)。项目位于北回归线以南,属于南亚热带海洋性季风气候区。顺德区气象站近 20 年(2004~2023 年)气候资料表明,近 20 年平均气温为 23.7℃,最高气温 39.2℃,出现在 2017 年的 8 月份,最低气温为 2.8℃,出现在 2015 年的 12 月份。近 20 年间最大月平均风速为 2.38 米/秒,最小月平均风速为 2 米/秒,多年平均风速为 2.15 米/秒。年平均气温 20.93~27.76℃之间,多年平均降雨量 1789.41

毫米, 多年平均相对湿度 71.79%。

4.1.4 河流水文

顺德区没有独立水系,只有西、北江流过区域。境内河涌纵横交错,属珠江三角洲河网区。现有过境的西、北江干支流有 16 条段,长 210 公里,将全区分割成 13 块冲积平原区。内河主要河涌有 1394 条,全长 1867.64 公里。主要河流依地势从西北流向东南,深 5~14 米,年过境水量概算达 1504 亿立方米,河水受潮汐作用,均为双向流动,一般都有顺逆流向出现。潮汐现象在非洪水时期,一天出现两次高潮和两次低潮,受洪水影响,有时一天只出现一次高潮和一次低潮。在发生较大洪水时,上游地区会连续数天潮汐现象消失,或只发生一次高潮(洪峰)。利用高潮灌溉,低潮排水便可以大部分解决农田排灌需求。但每年 4 月初至 9 月底的洪水期间遇上台风在珠江口或以西登陆,则会形成较大的台风暴潮增水,一般可达 0.5~1.0 米,威胁堤围安全。遇到干旱年份,上游来水少,下游局部地区受咸潮影响。全区地下水估算为 0.66 亿立方米,深层地下水储量未明。

4.2 地表水环境质量现状与评价

项目所在地属于杏坛污水处理厂的纳污范围,食堂废水经隔油隔渣、生活污水经三级化粪池处理达标后,通过市政管道排入杏坛污水处理厂;杏坛生活污水处理厂尾水处理达标后排入北马河,而后汇入顺德支流。纳污水体北马河、顺德支流引用佛山市生态环境局公布的 2021~2023 年市控考核断面水质情况、佛山市生态环境局公布的 2022~2024 年度佛山市各主要水环境控制单元控制水体水质达标情况以及《佛山市生态环境局顺德分局关于发布<2023 年度佛山市顺德区生态环境状况公报>的通知》(佛环顺函〔2024〕44 号)中顺德支流新涌断面的年度监测结果进行评价。故本项目不再单独布点监测。

4.2.1 评价标准

根据《关于印发<广东省地表水环境功能区划>的通知》(粤环〔2011〕14 号)以及《佛山市生态环境局关于印发<佛山市水生态环境保护"十四五"规划>的通知》(佛环函〔2022〕65 号),北马河执行《地表水环境质量标准》(GB3838-2002)V类标准,

纳污水体下游顺德支流执行Ⅲ类标准。

4.2.2 监测结果与评价

1、顺德支流佛山市杏坛镇控制单元水质现状情况

项目处于顺德支流佛山市杏坛镇控制单元,控制水体顺德支流执行III类水质标准,根据佛山市生态环境局公布的 2021~2023 年度佛山市各主要水环境控制单元控制水体水质达标情况,顺德支流控制断面水质均达标。

							2025年		20214	年水质
17 1	行政区 ▼	镇街	控制水体	断面名称	断面经度	断面纬度		水质类 別 ▽	对应2025 年目标的 达标情况。	对应2025年目标的 超标因子(倍数)
顺德支流佛山市 杏坛镇控制单元	顺德区	杏坛镇	顺德支流	飞鹅山	113. 242973	22. 807647	III类	III类	达标	
							2025年		2022	年水质
市级控制单元名 称	行政区	镇街	控制水体	断面名称	断面经度	断面纬度	水质目标	水质类 别	对应2025 年目标的 达标情况。	对应2025年目标的 超标因子(倍数)
顺德支流佛山市杏 坛镇控制单元	顺德区	杏坛镇	顺德支流	飞鹅山	113. 242973	22. 807647	III类	III类	达标	
							2025年		2023	年水质
市级控制单元名称	行政区	镇街	控制水体	断面名称	斯面经度	断面纬度	水质目	1	对应2025 年目标的 达标情况。	对应2025年目标的 超标因子(倍数)
顺德支流佛山市杏坛 镇控制单元	顺德区	杏坛镇	顺德支流	飞鹅山	113. 242973	22. 807647	III类	III类	达标	

图 4.2-1 顺德支流佛山市杏坛镇控制单元 2021-2023 年检测结果

2、受纳水体北马河水质现状情况

项目纳污河流为北马河,北马河执行V类水质标准,根据佛山市生态环境局公布的 2022~2024 年度水质监测数据和市控考核断面水质情况,北马河控制断面水质均达标。 纳污水体北马河水质满足《地表水环境质量标准》(GB3838-2002)之V类水功能要求。

					1				Τ		原始	粉捉 (単位	: (mg/L)	1)			结论
断面名称		目标	所属 区域 ☑	所属領 街	属性	年	Y	月	溶解				需氧	生化需氧量	氨氮	总磷	水质 类别	是否达标
北马河		貳≤ /L,其 法V类	顺德区	杏坛镇	市考/干河	.7(1,7)	2 1	均值	5. 1	8 4	. 89	21.	33	4. 39	1. 57	0. 35	V类	达标
	1	'							'	月	見始数	据(-	单位	: (mg/I	.))		<u>'</u>	结论
断面名 称	水质 目标			属镇 封	属性	年	月	溶	F解 氧	高锰 指		化学 (量		生化需 氧量	氨氮	总磷	水质类别	
北马河	V类	顺德区	· 杏士		下考/主 干河涌		均值	1 4	1. 68	4.	78	23.	92	4. 82	1. 03	0. 37	7 V类	达标
											原女	台数据	(单	位: (mg	/L))			结论
断面名 称	水质目 标	所属区 域	所属領 街	真	属性	年		月	浮	序解氧	高锰度		化学 氧量			(总磷	水质多别	是否达 标
北马河	V类	顺德区	杏坛铃	10.	考/主	2024均值		24均位		4. 66	4. 5	56	23.		1 1.94	0. 28	V类	达标

图 4.2-2 北马河 2022~2024 年水质情况

3、受纳水体下游顺德支流水质现状情况

根据《佛山市生态环境局顺德分局关于发布<2023 年度佛山市顺德区生态环境状况公报>的通知》(佛环顺函〔2024〕44号),2023 年全区地表水环境质量保持稳定,5个饮用水源水质状况全部为优,饮用水源水质达标率为100%;2个国控断面(乌洲、顺德港)、3个省控断面(杨滘、海凌、飞鹅山)均符合相应的水质目标,水质优良率为100%。2023 年顺德区主河道质量评价见下表。

序号	河流名称	断面	断面定类	水质评价标准	达标情况
1	吉利涌	平步	II	III	达标
2	潭州水道上游	潭村	II	II	达标
3	潭州水道下游	西海	II	III	达标
4	陈村水道	江口	III	III	达标
5	陈村涌	四方磨	III	III	达标
6		杨滘	II	II	达标
7		大闸	II	II	达标
8	顺德水道	羊额	II	II	达标
9		乌洲	II	II	达标
10		南洲水厂	II	II	达标
11	李家沙水道	五沙	II	III	达标
12	西江干流	甘竹滩	II	III	达标
13	顺德支流	新涌	III	III	达标
14	/	飞鹅山	III	III	达标
15	容桂水道	穗香围	II	III	达标
16	4年八년	顺德港	II	III	达标
17		天连	II	III	达标
18	东海水道	海凌	II	II	达标
19		星槎	II	III	达标
20	鸡鸦水道	细滘大桥	II	II	达标
21	桂州水道	南头大桥	II	III	达标
22	洪奇沥	高黎	II	III	达标
23	古镇水道	鹅洋沙	II	III	达标
24	凫洲河	均安大桥	III	IV	达标

表 4.2-1 2023 年顺德区主河道质量评价表

流经顺德区及周边城市交界水域 16 条主要河流、24 个功能区监测断面水质均为优良,全年平均值达标率为 100%。顺德支流新涌断面、飞鹅山断面均为 24 个功能区监测断面之一,故项目纳污水体下游顺德支流水质满足《地表水环境质量标准》(GB3838-2002)之III类水功能要求。

4.3 地下水环境质量现状监测与评价

4.3.1 区域水文地质概况

1、原生水质问题

根据现有资料分析,评价地表水资源丰富,对地下水的开发利用较少,评价区没有因地下水有害物质含量偏高或者偏低而导致的克山病、氟超标、大骨节病、地方甲状腺肿等疾病。

2、环境水文地质问题

根据现场调查,项目所在区域原生地形地貌属于冲积平原地貌,场地地势较为平整,场地内未发现有影响场区稳定性的构造形迹等不良地质作用,场地的区域稳定性较好。区域没有坡度较大的边坡,不存在边坡地质灾害及隐患。综合来说,评估区内地质灾害不活跃。

3、与地下水有关的人类活动调查

评价区域内没有相关的自然保护区及风景名胜区,顺德区杏坛街道基本是由自来水供应饮用水,水源基本来自地表水,因此基本不对地下水进行开采,没有地下水的集中饮用水源。

4、地下水污染源调查

评价区内的生活污水经处理达标后排入杏坛污水处理厂。评价区内多为农业用地、工业用地、住宅用地,评价区内农田以自然降水及沟渠水作为灌溉用水。

4.3.2 监测资料

根据《环境影响评价技术导则 地下水环境》(HJ610-2016),项目属于III类建设项目,地下水敏感程度属于不敏感,本项目地下水环境影响评价的工作等级为三级评价。

为评价本项目所在区域的地下水环境背景浓度,建设单位委托<u>广东凯恩德环境技术有限公司</u>对本项目所在地的水质和水位进行监测。根据监测结果对所在区域地下水的水质现状作简要评价。

1、监测内容

本次环评调查地下水现状时主要监测项目、监测频次等内容见表 4.3-1 所示,监测布点图见图 4.3-1 所示。监测需要按照《环境影响评价技术导则 地下水环境》(HJ 610-2016)相关要求进行采样监测,并记录地下水水位。

图 4.3-1 地下水、大气监测布点图

表 4.3-1 地下水环境质量现状检测内容一览表

检测	具体位置	采样	检测项目	采样日期	检测日期
点位	大厅区直	类别	TE WAY I	和频次	JET 12/1 11 2/1
DW1	东经 113.11781	水质、	pH 值、氦氮、硝酸盐、亚硝酸盐、挥发性酚类、		
DWI	北纬 22.78329	水位	氰化物、砷、汞、铬(六价)、总硬度(以碳		
DW2	东经 113.11874	水质、	酸钙计)、铅、氟化物、镉、铁、锰、溶解性	2025-01-17	2025-01-17
DWZ	北纬 22.78864	水位	总固体、耗氧量、硫酸盐、氯化物、总大肠菌	频次:1次	
			群、细菌总数、苯、甲苯、二甲苯、苯乙烯、		2025-01-24
DW3	东经 113.13074	水质、	阴离子表面活性剂、钾、钠、钙、镁、碳酸盐、	,,,,	2020 01 2 .
DWS	北纬 22.77606	水位	重碳酸盐、氯离子、硫酸根、可萃取性石油烃		
			$(C_{10}\text{-}C_{40})$		
DW4	东经 113.11018	水位	/		/
D 111 4	北纬 22.78901	771	,	2025-01-17	/
DW5	东经 113.09789	水位	/	5023-01-17 频次:1次	
DWJ	北纬 22.78222	八匹	,	/天	/
DW6	东经 113.09719	水位	/	'/\	/
DWO	北纬 22.77030	八八五	,		/

2、监测方法与检出限

水质样品保存与分析采用《地下水环境质量标准》(GB14848-2017)规定的标准和国家生态环境局发布的《环境监测技术规范》及《水和废水监测分析方法》(第四版)中的有关规定进行,本次地下水水质监测采样均为潜水含水层水质样品,各项目分析方法详见表 4.3-2。

表 4.3-2 地下水水质分析方法及检出限

检测项目	检测方法	使用仪器	检出限
pH 值	《水质 pH 值的测定 电极法》HJ 1147-2020	便携式酸碱度仪 AE6601	
溶解性总固体	《生活饮用水标准检验方法 第四部分: 感官性状和物理指标》 GB/T 5750.4-2023(11)	电子天平 BSA224S	5 mg/L
铬(六价)	《生活饮用水标准检验方法 第6部 分:金属和金属类指标》GB/T 5750.6-2023(13.1)	ᄠᄭᆿᇚᄼᄽᄽᄚᄓ	0.004 mg/L
氰化物	《水质 氰化物的测定 容量法和分光 光度法》HJ 484-2009	紫外可见分光光度计 UV-1801	0.004 mg/L
氨氮	《水质 氨氮的测定 纳氏试剂分光光 度法》HJ 535-2009		0.025 mg/L
F-	《水质 无机阴离子(F、Cl、NO2-、	南マム流い	0.006 mg/L
Cl ⁻	Br、NO ₃ -、PO ₄ ³ -、SO ₃ ² -、SO ₄ ² -)的测	离子色谱仪 CIC D100	0.007 mg/L
$\mathrm{SO_4}^{2 ext{-}}$	定 离子色谱法》HJ 84-2016	CIC-D100	0.018 mg/L
挥发酚	《水质 挥发酚的测定 4-氨基安替比	紫外可见分光光度计 UV-1801	0.0003 mg/L

检测项目	检测方法	使用仪器	检出限
	林分光光度法》HJ 503-2009		
砷	《水质 汞、砷、硒、铋和锑的测定 原	原子荧光光谱仪	0.3 μg/L
汞	子荧光法》HJ 694-2014	AF-640A	0.04 μg/L
铅	石墨炉原子吸收法(B) 《水和废水监测分析方法》(第四版增 补版)国家环境保护总局(2002)3.4.16	原子吸光光谱仪 ICE-3500	1 μg/L
铁	(5) 《水质 铁、锰的测定 火焰原子吸收分 光光度法》GB/T 11911-1989	原子吸收分光光度计 TAS 990AFG	0.03 mg/L
阴离子表面活性剂	《水质 阴离子表面活性剂的测定 亚 甲蓝分光光度法》GB/T 7494-1987	紫外可见分光光度计 UV-1801	0.05 mg/L
高锰酸盐指数(以 O ₂ 计)	《生活饮用水标准检验方法 第7部 分:有机物综合指标》GB/T 5750.7-2023 (4.1)	聚四氟乙烯滴定管	0.05 mg/L
钙和镁总量(总硬 度)	《水质 钙和镁总量的测定 EDTA 滴 定法》GB/T 7477-1987	聚四氟乙烯滴定管	5 mg/L
可萃取性石油烃 (C ₁₀ -C ₄₀)	《水质 可萃取性石油烃(C ₁₀ -C ₄₀)的 测定 气相色谱法》HJ 894-2017	气相色谱仪 Nexis GC-2030	0.01 mg/L
锰	《水质 铁、锰的测定 火焰原子吸收分 光光度法》GB/T 11911-1989	原子吸收分光光度计 TAS 990AFG	0.01 mg/L
镉	《水质 铜、锌、铅、镉的测定 原子吸收分光光度法》GB/T 7475-1987	原子吸收分光光度计 TAS 990AFG	0.001 mg/L
碳酸盐	酸碱指示剂滴定法(B)《水和废水 监测分析方法》(第四版增补版)国家环	聚四氟乙烯滴定管	以 1/2CO ₃ ² -计 为 0.005mmol/L
重碳酸盐	境保护总局 (2002 年) 3.1.12.1		以 HCO ₃ ·计为 0.005mmol/L
总大肠菌群	《水和废水监测分析方法》(第四版增补版)国家环境保护总局 2002年 多管发酵法(B)5.2.5(1)	恒温培养箱 LRH-70F	20 MPN/L
细菌总数	《水质 细菌总数的测定 平皿计数法》 HJ 1000-2018	LKH-701	1 CFU/mL
钾	《水质 钾和钠的测定 火焰原子吸收	原子吸收分光光度计	0.05 mg/L
钠	分光光度法》 GB/T 11904-1989	TAS 990AFG	0.01 mg/L
钙	《水质 钙和镁的测定 原子吸收分光	原子吸收分光光度计	0.02 mg/L
镁	光度法》 GB/T 11905-1989	TAS 990AFG	0.002 mg/L
硝酸盐氮	《水质 硝酸盐氮的测定 酚二磺酸分 光光度法》GB/T 7480-1987	紫外可见分光光度计	0.02 mg/L
亚硝酸盐氮	《水质 亚硝酸盐氮的测定 分光光度 法》GB/T 7493-1987	UV-1801	0.001 mg/L
硫酸盐	《水质 硫酸盐的测定 铬酸钡分光光 度法(试行)》HJ/T 342-2007	紫外可见分光光度计 T6 新世纪	4 mg/L
氯化物	《水质 氯化物的测定 硝酸银滴定法》 GB/T 11896-1989	聚四氟乙烯滴定管	10 mg/L
苯 甲苯 间,对-二甲苯 邻-二甲苯	《水质 挥发性有机物的测定 吹扫捕 集/气相色谱-质谱法》 HJ 639-2012	气相色谱质谱联用仪 Trace1300 ISQ7000	1.4μg/L 1.4μg/L 2.2μg/L 1.4μg/L

4.3.3 评价标准

项目所在区域地下水执行《地下水质量标准》(GB/T 14848-2017)的III类标准, 具体标准限值见表 2.4-4。

4.3.4 评价方法

采用单项评价标准指数法对地下水水质现状进行评价。单项水质参数 i 在第 j 点的标准指数计算公式如下:

(1) 一般项目单项水质参数 i 在第 j 点的标准指数:

$$S_{i,j} = C_{i,j} / C_{s,i}$$

(2) pH 的标准指数为:

$$S_{pH,j} = \frac{7.0 - pH_{j}}{7.0 - pH_{sd}}$$

$$pH_{j} \le 7.0$$

$$S_{pH,j} = \frac{pH_{j} - 7.0}{pH_{su} - 7.0}$$

$$pH_{j} > 7.0$$

其中: $S_{pH,i}$ — 单项水质参数 pH 在第 i 点的标准指数;

 pH_i —j点的pH值;

pHsd — 地下水水质标准中规定的 *pH* 值下限;

 pH_{su} — 地下水水质标准中规定的 pH 值上限。

(3) DO 的标准指数为:

$$S_{DO,j} = \frac{\left|DO_f - DO_j\right|}{DO_f - DO_s}, DO_j \ge DO_s$$

$$S_{DO,j} = 10 - 9 \frac{DO_j}{DO_s}, DO_j < DO_s$$

其中: $DO_f = 468 / (31.6 + T) (mg/L)$,T 为水温 (°C);

 S_{DOj} —溶解氧在第j取样点的标准指数;

 DO_J — 溶解氧在第 j 取样点的浓度,(mg/L);

DOs — 溶解氧的评价标准, (mg/L)。

4.3.5 监测结果

地下水环境质量现状评价结果见表 4.3-3 至表 4.3-4。

表 4.3-3 地下水水位监测结果

检测点位	DW1	DW2	DW3
井深 (m)	3.12	2.18	3.11
地下水埋深(m)	1.08	1.72	1.26
地面海拔(m)	-1.36	1.99	2.53
水位 (m)	-2.44	0.27	1.27
东经°	113.11781	113.11874	113.13074
北纬。	22.78329	22.78864	22.77606
检测点位	DW4	DW5	DW6
井深 (m)	3.23	3.13	2.62
地下水埋深(m)	1.01	1.11	1.25
地面海拔 (m)	4.84	2.02	2.82
水位 (m)	3.83	0.91	1.57
东经°	113.11018	113.09789	113.09719
北纬。	22.78901	22.78222	22.7703

备注: 水位=地面海拔-地下水位埋深

项目所在区域地下水流向为自西北向东南,地下水流向图见图 4.3-2。

图 4.3-2 区域地下水流向图

表 4.3-4 地下水水质监测结果

单位: mg/L, 单位注明者除外

检测点位					
检测项目	DW1	DW2	DW3	III类质量标准限值	判定
pH 值(无量纲)		-		6.5~8.5	达标
氨氮			-	≤0.50	达标
硝酸盐(以N计)			-	≤20.0	达标
亚硝酸盐(以N计)			-	≤1.00	达标
阴离子表面活性剂			-	≤0.3	达标
挥发性酚类			-	≤0.002	达标
碳酸盐(以1/2CO3 ²⁻ 计)			- -		
(mmol/L)	_		_		
重碳酸盐(以 HCO3-计)					
(mmol/L)	_		_		
总硬度(以 CaCO₃ 计)	_		_	≤450	达标
溶解性总固体	_		<u>-</u>	≤1000	达标
高锰酸盐指数(以 O ₂ 计)	_		<u>-</u>	≤3.0	达标
氰化物	_		<u>-</u>	≤0.05	达标
总大肠菌群(MPN/L)			<u>-</u>	≤30	达标
细菌总数(CFU/mL)			<u>-</u>	≤100	达标
钾			<u>-</u>		-
钠	_		<u>-</u>	≤200	达标
钙	<u>-</u>		-		
镁	<u>-</u>		-		
铁	<u>-</u>		-	≤0.3	
锰	<u>-</u>		-	≤0.10	达标
镉			-	≤0.005	达标
铅(μg/L)			-	≤10	
砷(μg/L)			-	≤10	
汞 (μg/L)			-	≤1.0	达标
铬 (六价)	-		-	≤0.05	达标
氟化物	-		-	≤1.0	达标
氯离子	<u>-</u>		-		
硫酸根	<u>-</u>		-		
氯化物	<u>.</u>		-	≤250	达标
硫酸盐	<u>.</u>		-	≤250	达标
苯 (μg/L)			-	≤10	达标
甲苯(μg/L)			-	≤700	达标
间,对-二甲苯(μg/L)			-	≤500	达标
邻-二甲苯(μg/L)		\		≤500	达标

备注: 检测结果低于检出限以"检出限(L)"表示。

4.3.6 评价小结

根据地下水监测结果,项目周边地下水监测点指标均符合《地下水质量标准》(GB/T 14848-2017)中III类水质标准。

根据广东省地下水环境功能区划,本项目所在区域为维持现状,不属于开发利用和保护区,项目通过采取地下水保护措施后,不会对区域地下水水质产生明显影响。随着区域生活污水收集效率提高,河涌水质改善,区域地下水水质会得以改善。

4.4 土壤环境质量现状监测与评价

4.4.1 监测布点

项目土壤评价等级为一级,根据《环境影响评价技术导则 土壤环境(试行)》(HJ964 2018)的要求,在本项目占地范围内设7个监测点,在项目占地范围外设4个监测点,具体监测点位置见图4.4-1。

监测点 编号	监测点描述	监测因子	现场记录	理化特性 调査	执行标准
v ₁	项目 占地范围外(农用地) 1 个表层样点(0~0.2m)	pH、石油烃、苯类 b			《土壤环境质量 农用地土壤污染 风险管控标准(试 行)》(GB
▼2	项目 占地范围外(农用地) 1 个表层样点(0~0.2m)	pH、镉、汞、砷、铅、铬、铜、镍、锌、铬(六价)、苯类 b、石油烃	经纬 度、颜 色、结	pH 值、阳 离子交换 量、氧化还	15618-2018)中农 用地土壤污染风 险筛选值(基本) 其他标准
▼ 3	项目 占地范围外(1000m 范围内)1 个表层样点 (0~0.2m)	45 项 ª, pH、石油烃	构、质 地、砂 砾含	原电位、饱 和导水率、	《土壤环境质量
▼ 4	项目 占地范围外(200m 范 围内)1 个表层样点 (0~0.2m)	pH、石油烃、苯类 b	量、其 他异物	土壤容重、 孔隙度	建设用地土壤污染风险管控标准(试行)》
▼ 5	项目 占地范围内 5 个柱状	45 项 a, pH、石油烃			(GB36600-2018)
▼ 6~9	样点	pH、石油烃、苯类 b			中第二类用地筛 选值标准
▼10~11	项目 占地范围内 2 个表层 样点(0~0.2m)	pH、石油烃、苯类b	复杂	写田岭 11	一年7世 12 -

表 4.4-1 土壤环境质量现状监测点布设一览表

监测点 编号	监测点描述	监测因子	现场记录	理化特性 调査	执行标准
一て 不上/大/大上イ	£ 0~0.5m, 0.5~1.5m, 1.5~3	m 分别取样			

图 4.4-1 土壤、声监测点位图

4.4.2 监测时间和方法

本次土壤环境现状监测委托广东凯恩德环境技术有限公司于2024年1月15日~2024年1月16日进行采样监测。

土壤环境现状监测方法按照 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600 2018)中的检测方法具体见下表:

检测项目	检测方法	使用仪器	检出限
pH 值	《土壤 pH 值的测定 电位法》HJ 962-2018	酸度计 PHS-3E	
六价铬	《土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法》HJ 1082-2019	原子吸收分光光	0.5 mg/kg
铜	- 《土壤和沉积物 铜、锌、铅、镍、铬的测	度计	1 mg/kg
铅	一定 火焰原子吸收分光光度法》HJ 491-2019	TAS-990AFG	10 mg/kg
镍	一 人相尽了吸收力儿儿及伝》 HJ 491-2019		3 mg/kg
砷	《土壤质量 总汞、总砷、总铅的测定 原子	原子荧光光谱仪	0.01 mg/kg
汞	荧光法 第 2 部分: 土壤中总砷的测定》GB/T 22105.2-2008	原了火九九盲仪 AF-640A	0.002 mg/kg
镉	《土壤质量 铅、镉的测定 石墨炉原子吸收 分光光度法》GB/T 17141-1997	原子吸收光谱仪 iCE3500	0.01 mg/kg
锌	《土壤和沉积物 铜、锌、铅、镍、铬的测	原子吸收分光光	1 mg/kg
铬	定 火焰原子吸收分光光度法》 HJ491-2019	度计	4 mg/kg

表 4.4-2 检测方法及检出限、仪器设备表

检测项目	检测方法	使用仪器	检出限
		TAS-990AFG	
1,1,1,2-四氯乙烷 1,1,1-三氯乙烷 1,1,2,2-四氯乙烷 1,1,2-三氯乙烷			1.2 μg/kg 1.3 μg/kg 1.2 μg/kg 1.2 μg/kg
1,1-二氯乙烯 1,1-二氯乙烷 1,2,3-三氯丙烷 1,2-二氯丙烷 1,2-二氯乙烷 1,2-二氯苯 1,4-二氯苯 三氯乙烯 乙苯 二氯甲烷 反式-1,2-二氯乙烯 四氯化碳 氯乙烯 四氯化碳 氯方烯 二氯甲烷	《土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》HJ 605-2011	气相色谱质谱联 用仪 Trace1300 ISQ7000	1.0 µg/kg 1.2 µg/kg 1.2 µg/kg 1.1 µg/kg 1.3 µg/kg 1.5 µg/kg 1.5 µg/kg 1.5 µg/kg 1.5 µg/kg 1.4 µg/kg 1.4 µg/kg 1.9 µg/kg 1.1 µg/kg 1.2 µg/kg
间,对-二甲苯 顺式-1,2-二氯乙烯 硝基苯 苯胺 2-氯苯酚 苯并(a) 芘 苯并(b) 荧蒽 苯并(b) 荧蒽 苯并(b) 荧蒽 苯并(b) 荧蒽 二苯并[a, h] 蒽 茚并[1,2,3-cd]芘	《土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法》HJ 834-2017	气相色谱仪 Nexis GC-2030 气相色谱质谱联 用仪 GCMS-QP2020 NX	1.2 µg/kg 1.3 µg/kg 0.09 mg/kg 0.08 mg/kg 0.06 mg/kg 0.1 mg/kg
石油烃(C ₁₀ -C ₄₀)	《土壤和沉积物 石油烃 (C10-C40) 的测定 气相色谱法》HJ 1021-2019	气相色谱仪 Nexis GC-2030	6 mg/kg
渗滤率	《森林土壤渗滤率的测定》LY/T 1218-1999	量筒	
土壤容重	《土壤检测 第 4 部分:土壤容重的测定》 NY/T 1121.4-2006		0.02 g/cm ³
总孔隙度	《森林土壤水分-物理性质的测定》 LY/T 1215-1999	电子天平 YP6002	
氧化还原电位	《土壤 氧化还原电位的测定 电位法》HJ 746-2015	土壤 OPR 计 TR-901	
阳离子交换量	《土壤 阳离子交换量的测定 三氯化六氨	紫外可见分光光	0.8cmol+/kg

检测项目	检测方法	使用仪器	检出限
	合钴浸提-分光光度法》HJ 889-2017	度计	
		T6 新世纪	

4.4.3 评价标准

本项目所在区域属于工业用地,执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)第二类用地筛选值标准;评价范围内农用地参考执行《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618-2018)相应筛选值;具体标准限值见表 2.4-6。

4.4.4 监测结果及评价

表 4.4-3 土壤监测结果表 a

单位: mg/kg, pH 值及单位注明者除外

				шу/ку, рн	值 及 甲 位 汪 り	
检测点位_			结果		筛选值	达标情
检测项目	_ ▼3	▼5-1	▼5-2	▼5-3	第二类用地	况
pH 值	_			_	/	/
砷	_				60	达标
镉	_			_	65	达标
六价铬	_				5.7	达标
铜	_				18000	达标
铅	<u></u>				800	达标
汞				_	38	达标
镍	_				900	达标
石油烃 (C ₁₀ -C ₄₀)	_				4500	达标
苯胺	ND	ND	ND	ND	260	达标
2-氯苯酚	ND	ND	ND	ND	2256	达标
硝基苯	ND	ND	ND	ND	76	达标
萘	ND	ND	ND	ND	70	达标
苯并[a]蒽	ND	ND	ND	ND	15	达标
薜	ND	ND	ND	ND	1293	达标
苯并[b]荧蒽	ND	ND	ND	ND	15	达标
苯并[k]荧蒽	ND	ND	ND	ND	151	达标
苯并[a]芘	ND	ND	ND	ND	1.5	达标
茚并[1,2,3-cd]芘	ND	ND	ND	ND	15	达标
二苯并[a,h]蒽	ND	ND	ND	ND	1.5	达标
氯甲烷(μg/kg)	ND	ND	ND	ND	37000	达标
氯乙烯(μg/kg)	ND	ND	ND	ND	430	达标
1,1-二氯乙烯(μg/kg)	ND	ND	ND	ND	66000	达标
二氯甲烷(μg/kg)	ND	ND	ND	ND	616000	达标
反式-1,2-二氯乙烯(μg/kg)	ND	ND	ND	ND	54000	达标
1,1-二氯乙烷(μg/kg)	ND	ND	ND	ND	9000	达标
顺式-1,2-二氯乙烯(μg/kg)	ND	ND	ND	ND	596000	达标
氯仿(μg/kg)	ND	ND	ND	ND	900	达标
1,1,1-三氯乙烷(μg/kg)	ND	ND	ND	ND	840000	达标

检测点位		检测	l结果		筛选值	达标情
检测项目	▼3	▼5-1	▼5-2	▼5-3	第二类用地	况
四氯化碳(μg/kg)	ND	ND	ND	ND	2800	达标
苯(μg/kg)	ND	ND	ND	ND	4000	达标
1,2-二氯乙烷(μg/kg)	ND	ND	ND	ND	5000	达标
三氯乙烯(μg/kg)	ND	ND	ND	ND	2800	达标
1,2-二氯丙烷(μg/kg)	ND	ND	ND	ND	5000	达标
甲苯(μg/kg)	ND	ND	ND	ND	1200000	达标
1,1,2-三氯乙烷(μg/kg)	ND	ND	ND	ND	2800	达标
四氯乙烯(μg/kg)	ND	ND	ND	ND	53000	达标
氯苯(μg/kg)	ND	ND	ND	ND	270000	达标
1,1,1,2-四氯乙烷(μg/kg)	ND	ND	ND	ND	10000	达标
乙苯(μg/kg)	ND	ND	ND	ND	28000	达标
间,对-二甲苯(µg/kg)	ND	ND	ND	ND	570000	达标
邻-二甲苯(μg/kg)	ND	ND	ND	ND	640000	达标
苯乙烯(μg/kg)	ND	ND	ND	ND	1290000	达标
1,1,2,2-四氯乙烷(μg/kg)	ND	ND	ND	ND	6800	达标
1,2,3-三氯丙烷(μg/kg)	ND	ND	ND	ND	500	达标
1,4-二氯苯(μg/kg)	ND	ND	ND	ND	20000	达标
1,2-二氯苯(μg/kg)	ND	ND	ND	ND	560000	达标
渗滤率(mm/min)	7.21	7.13	6.57	5.73	/	/
土壤容重(g/cm³)	1.04	1.07	1.04	1.02	/	/
总孔隙度(%)	47.8	47.8	45.7	41.2	/	/
阳离子交换量(cmol+/kg)	5.3	3.5	5.1	6.3	/	/
氧化还原电位(mV)	297	496	431	350	/	/

备注: "ND"表示检测结果小于方法检出限。

表 4.4-4 土壤监测结果表 b

单位: mg/kg, pH 值及单位注明者除外

	g,phi 直入干i	TIT /4 H 181/		
检测点位		9/4果	筛选值	达标情况
检测项目	▼1	▼2	农用地	心你情况
pH 值			/	/
砷		_	30	达标
镉			0.3	达标
六价铬			/	/
铜		_	100	达标
铅			120	达标
汞		_	2.4	达标
镍			100	达标
锌			250	达标
铬		_	200	达标
石油烃 (C ₁₀ -C ₄₀)			/	/
苯(µg/kg)			/	/
甲苯(μg/kg)			/	/
间,对-二甲苯(μg/kg)		_	/	/
邻-二甲苯(µg/kg)		_	/	/
渗滤率(mm/min)			/	/
土壤容重(g/cm³)			/	/

	检测点位	检测	结果	筛选值	达标情况
检测项目		\blacktriangledown_1	▼ 2	农用地	处你用班
总孔隙度	(%)	•		/	/
阳离子交换量(emol+/kg)			/	/
氧化还原电位	(mV)			/	/

备注: "ND"表示检测结果小于方法检出限。

表 4.4-5 土壤监测结果表 c

单位: mg/kg, pH 值及单位注明者除外

														0 0			
检测点位							柱	验测结果	Ę							筛选值	达标
检测项目	▼ 4	▼ 10	▼ 11	▼6-1	▼ 6-2	▼ 6-3	▼ 7-1	▼ 7-2	▼ 7-3	▼8-1	▼8-2	▼8-3	▼9-1	▼9-2	▼9-3	第二类用地	情况
pH 值																/	/
石油烃 (C ₁₀ -C ₄₀)	_															4500	达标
苯(μg/kg)	_															4	达标
甲苯(μg/kg)	_														_	1200	达标
间,对-二甲苯(μg/kg)	_														_	570	达标
邻-二甲苯(μg/kg)	_														_	640	达标
渗滤率(mm/min)	_														_	/	/
土壤容重(g/cm³)	_															/	/
总孔隙度(%)	_															/	/
阳离子交换量(cmol+/kg)	_														_	/	/
氧化还原电位(mV)	1															/	/

备注: "ND"表示检测结果小于方法检出限。

表 4.4-6 土壤理化特性调查表

采样位置		采样日期	土壤湿度	持続出る	<i>6</i> 1:1// 1	砂砾含量		样品性状	
木件仏具	经纬度	木件口朔	工場巡及	植物根系	结构	(%)	颜色	质地	刺激性气味
▼1	113.11792、22.78180		潮	多量	团块	80	暗棕	轻壤土	无
▼ 4	113.11202、22.78172	2025-01-15	于	中量	团块	80	棕	砂壤土	无
▼10	113.11888、22.78214	2023-01-13	湿	中量	团块	80	暗棕	轻壤土	无
▼ 11	113.11944、22.78410		于	中量	团块	90	灰	轻壤土	无
▼6-1			于	少量	团块	80	暗棕	砂壤土	无
▼6-2	113.11821、22.78405		湿	无	柱状	70	暗棕	中壤土	无
▼ 6-3			湿	无	柱状	40	暗棕	粘土	无
▼7-1			于	少量	团块	85	灰	砂壤土	无
▼ 7-2	113.11781、22.78329	2025-01-16	湿	无	柱状	75	暗棕	中壤土	无
▼ 7-3			湿	无	柱状	70	暗灰	中壤土	无
▼8-1		2023-01-10	干	少量	团块	80	棕	砂壤土	无
▼8-2	113.11826、22.78293		湿	无	柱状	70	暗棕	中壤土	无
▼8-3			湿	无	柱状	40	暗棕	粘土	无
▼9-1			干	少量	团块	80	暗棕	砂壤土	无
▼9-2	113.11801、22.78226		湿	无	柱状	75	红棕	轻壤土	无
▼9-3			湿	无	柱状	40	棕	粘土	无
▼ 3	113.11730、22.78429	2025-01-15	干	少量	团块	90	暗灰	砂壤土	无
▼5-1			干	中量	团块	85	棕	砂壤土	无
▼5-2	113.11835、22.78373	2025-01-16	潮	无	柱状	70	灰	轻壤土	无
▼5-3			湿	无	柱状	40	黑	粘土	无
▼2	113.11404、22.78566	2025-01-15	干	少量	团块	85	棕	砂壤土	无

表 4.4-7 土体构型

从监测结果可知,项目附近区域▼1、▼2点位符合《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618-2018)相应筛选值,其余点位符合《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)第二类用地筛选值标准。

4.5 环境空气质量现状监测与评价

4.5.1 调查内容和目的

本项目环境空气影响评价工作等级为一级,根据《环境影响评价技术导则 大气环境》(HJ2.2-20018),本项目环境空气质量现状调查和评价的内容和目的为:

- ①调查项目所在区域环境质量达标情况;
- ②调查评价范围内有环境质量标准的评价因子的环境质量监测数据或进行补充监测,用于评价项目所在区域污染物环境质量现状。

项目涉及的基本污染物为 SO₂、NO₂、PM_{2.5}和 PM₁₀, 其他污染物为 TSP、NMHC、TVOC、二甲苯、臭气浓度、NO_x。

本项目环境空气质量现状调查与评价包括空气质量达标区判定、其他污染物环境质量现状评价两个部分。

4.5.2 空气质量达标区判定

根据《佛山市生态环境局顺德分局关于发布<2023 年度佛山市顺德区生态环境状况公报>的通知》(佛环顺函〔2024〕44号)可知,2023 年全区空气质量综合指数为3.14,比2022 年下降4.0%,在全市五区中排名第二。

2023 年全区二氧化硫(SO_2)、二氧化氮(NO_2)、可吸入颗粒物(PM_{10})、细颗粒物($PM_{2.5}$)、臭氧(O_3)年平均浓度分别为 6、28、35、20、164 微克/立方米,一氧化碳(CO)年平均浓度为 1.0 毫克/立方米。与去年相比,2023 年度顺德区 NO_2 、 O_3 、CO 年平均浓度分别下降 3.4%、13.7%、9.1%, SO_2 、 PM_{10} 、 $PM_{2.5}$ 年平均浓度分别上升 20.0%、9.4%、5.3%。2023 年度全区 AQI 为 87.4%,较 2022 年增加 8.6 个百分点,详见下表。

污染物	浓度均值	评价标准	占标率	达标情况
$SO_2 (\mu g/m^3)$	6	60	10.00%	达标
$NO_2 (\mu g/m^3)$	28	40	70.00%	达标
$PM_{10} (\mu g/m^3)$	35	70	50.00%	达标
$PM_{2.5} (\mu g/m^3)$	20	35	57.14%	达标
CO (mg/m ³)	1.0	4	25.00%	达标
$O_3 (\mu g/m^3)$	164	160	102.50%	超标

表 4.5-1 区域环境空气现状评价表

根据上表可知,2023 年顺德区域环境空气 O3 超过《环境空气质量标准》

^{*}注:表中 CO 为年内日平均值的第 95 百分位数, O3 为年内日最大 8 小时平均值的第 90 百分位数。

(GB3095-2012)及其修改单二级标准,其余五项污染物指标浓度均能达到《环境空气质量标准》(GB3095-2012)及其修改单二级标准。因此,顺德区大气环境质量现状不达标,顺德区属于不达标区。

表 4.5-2 2023 年顺德苏岗空气质量数据(单位: μg/m³)

序号	 日期	NO ₂	SO ₂	PM ₁₀	PM _{2.5}	序号	 日期	NO ₂	SO ₂	PM ₁₀	PM _{2.5}
1	2023-01-01	31	6	33	22	184	2023-07-03	16	5	3	6
2	2023-01-01	27	7	34	22	185	2023-07-03	23	5	9	9
3	2023-01-02	26	6	36	28	186	2023-07-04	14	6	13	8
4	2023-01-03	40	6	44	31	187	2023-07-06	8	5	8	6
5	2023-01-04	50	7	56	35	188	2023-07-07	7	6	12	9
6	2023-01-05	56	7	40	26	189	2023-07-07	7	6	12	8
7	2023-01-07	42	7	41	31	190	2023-07-08	7	6	8	5
8	2023-01-07	41	7	39	26	191	2023-07-10	9	8	9	8
9	2023-01-08	39	6	16	16	192	2023-07-10	9	6	9	7
10	2023-01-09	35	5	3	4	193	2023-07-11	9	6	11	7
11	2023-01-10	34	6	9	10	194	2023-07-12	10	6	12	8
12	2023-01-11	44	6	23	20	195	2023-07-13	15	7	16	13
13	2023-01-12	23	6	19	11	196	2023-07-15	22	8	44	30
14	2023-01-13	22	6	14	11	197	2023-07-16	14	6	13	11
15	2023-01-15	14	6	12	5	198	2023-07-17	10	6	5	6
16	2023-01-16	12	6	9	7	199	2023-07-18	15	5	11	8
17	2023-01-17	13	6	26	16	200	2023-07-19	17	6	9	9
18	2023-01-18	12	7	26	19	201	2023-07-20	14	6	7	8
19	2023-01-19	16	7	30	23	202	2023-07-21	15	7	20	12
20	2023-01-20	16	7	33	27	203	2023-07-22	11	6	14	10
21	2023-01-21	18	7	43	34	204	2023-07-23	10	6	10	7
22	2023-01-22	13	9	54	52	205	2023-07-24	12	6	15	10
23	2023-01-23	9	8	68	63	206	2023-07-25	14	7	11	8
24	2023-01-24	4	6	40	23	207	2023-07-26	24	9	36	24
25	2023-01-25	9	7	63	40	208	2023-07-27	13	8	19	13
26	2023-01-26	14	8	47	33	209	2023-07-28	13	7	16	10
27	2023-01-27	7	7	42	26	210	2023-07-29	15	6	28	16
28	2023-01-28	10	8	50	26	211	2023-07-30	16	6	12	9
29	2023-01-29	16	8	42	24	212	2023-07-31	18	6	13	10
30	2023-01-30	30	7	40	28	213	2023-08-01	18	6	17	8
31	2023-01-31	35	8	37	24	214	2023-08-02	16	7	24	14
32	2023-02-01	39	8	34	18	215	2023-08-03	13	7	15	13
33	2023-02-02	30	7	33	18	216	2023-08-04	8	6	10	7
34	2023-02-03	/	/	/	/	217	2023-08-05	6	6	12	8
35	2023-02-04	32	7	41	29	218	2023-08-06	6	6	16	11
36	2023-02-05	39	7	35	33	219	2023-08-07	10	7	19	13
37	2023-02-06	44	7	49	43	220	2023-08-08	10	7	14	8
38	2023-02-07	58	8	57	45	221	2023-08-09	9	7	15	11
39	2023-02-08	33	7	23	14	222	2023-08-10	30	7	17	17
40	2023-02-09	32	8	22	17	223	2023-08-11	20	6	11	14
41	2023-02-10	48	7	37	24	224	2023-08-12	13	7	12	10
42	2023-02-11	21	7	16	11	225	2023-08-13	9	7	8	9
43	2023-02-12	19	7	16	10	226	2023-08-14	14	7	12	14
44	2023-02-13	22	6	16	9	227	2023-08-15	18	6	14	14
45	2023-02-14	21	7	11	6	228	2023-08-16	10	6	18	14
46	2023-02-15	/	/	/	/	229	2023-08-17	24	7	28	26
47	2023-02-16	37	8	34	24	230	2023-08-18	23	6	26	27
48	2023-02-17	50	9	49	33	231	2023-08-19	19	6	16	21
49	2023-02-18	61	10	60	39	232	2023-08-20	15	7	10	13
50	2023-02-19	47	9	57	36	233	2023-08-21	14	6	7	8
51	2023-02-20	33	9	44	30	234	2023-08-22	11	6	7	8
52	2023-02-21	37	10	69	48	235	2023-08-23	18	6	6	11
53	2023-02-22	35	10	59	30	236	2023-08-24	21	6	3	7
54	2023-02-23	41	9	57	35	237	2023-08-25	39	6	15	15
55	2023-02-24	51	11	76	52	238	2023-08-26	29	6	14	17

序号	日期	NO ₂	SO ₂	PM ₁₀	PM _{2.5}	序号	日期	NO_2	SO ₂	PM ₁₀	PM _{2.5}
56	2023-02-25	21	8	32	24	239	2023-08-27	13	6	4	10
57	2023-02-26	27	8	41	31	240	2023-08-28	20	6	6	11
58	2023-02-27	41	10	63	40	241	2023-08-29	18	7	13	10
59	2023-02-28	45	10	48	22	242	2023-08-30	13	6	20	11
60	2023-03-01	50	11	72	52	243	2023-08-31	12	6	15	8
61	2023-03-02	50	11	73	52	244	2023-09-01	10	7	21	10
62	2023-03-03	34	10	77	43	245	2023-09-02	10	6	12	6
63	2023-03-04	46	11	86	55 47	246	2023-09-03	19 19	7 8	21 34	12
64	2023-03-05 2023-03-06	40	10 9	76 56	27	247	2023-09-04	18	8	33	19 20
66	2023-03-06	51	9	50	23	248	2023-09-05	19	9	29	17
67	2023-03-07	44	9	55	25	250	2023-09-07	21	- 9 - 7	12	6
68	2023-03-08	48	11	65	37	251	2023-09-07	27	6	10	7
69	2023-03-09	31	11	53	33	252	2023-09-08	28	6	16	11
70	2023-03-10	34	9	48	26	253	2023-09-10	21	6	10	5
71	2023-03-11	26	8	48	25	254	2023-09-10	25	6	14	7
72	2023-03-12	27	9	102	31	255	2023-09-11	22	6	18	9
73	2023-03-13	47	10	92	37	256	2023-09-13	24	6	20	8
74	2023-03-14	30	8	57	32	257	2023-09-14	26	6	15	7
75	2023-03-15	35	10	58	36	258	2023-09-15	31	7	14	9
76	2023-03-10	34	8	48	28	259	2023-09-16	27	8	20	12
77	2023-03-18	22	7	52	35	260	2023-09-17	19	7	20	10
78	2023-03-19	20	7	29	19	261	2023-09-18	18	7	21	10
79	2023-03-20	19	7	32	16	262	2023-09-19	22	7	28	14
80	2023-03-21	21	7	32	18	263	2023-09-20	16	7	26	14
81	2023-03-22	15	7	31	22	264	2023-09-21	18	8	29	18
82	2023-03-23	15	8	31	19	265	2023-09-22	30	9	37	24
83	2023-03-24	24	8	26	17	266	2023-09-23	35	8	43	31
84	2023-03-25	26	7	18	18	267	2023-09-24	20	8	30	14
85	2023-03-26	24	7	4	6	268	2023-09-25	19	7	29	13
86	2023-03-27	30	7	9	8	269	2023-09-26	23	7	30	13
87	2023-03-28	32	8	15	11	270	2023-09-27	24	8	35	18
88	2023-03-29	36	7	12	14	271	2023-09-28	25	7	31	20
89	2023-03-30	37	7	6	9	272	2023-09-29	16	7	29	17
90	2023-03-31	33	7	6	8	273	2023-09-30	10	7	23	13
91	2023-04-01	42	7	27	27	274	2023-10-01	13	8	35	23
92	2023-04-02	34	8	25	26	275	2023-10-02	13	7	24	13
93	2023-04-03	27	8	24	19	276	2023-10-03	14	7	40	24
94	2023-04-04	16	7	24	17	277	2023-10-04	18	9	47	28
95	2023-04-05	14	7	16	16	278	2023-10-05	11	7	28	15
96	2023-04-06	19	8	17	13	279	2023-10-06	11	7	29	15
97	2023-04-07	18	8	14	10	280	2023-10-07	13	6	14	6
98	2023-04-08	30	9	62	28	281	2023-10-08	14	7	16	5
99	2023-04-09	34	10	61	36	282	2023-10-09	23	6	14	6
100	2023-04-10	36	8	46	26	283	2023-10-10	20	6	14	6
101	2023-04-11	31	8	40	20	284	2023-10-11	21	7	17	7
102	2023-04-12	37	8	44	26	285	2023-10-12	25	8	32	16
103	2023-04-13	23	8	40	26	286	2023-10-13	18	8	30	16
104	2023-04-14	36	8	60	32	287	2023-10-14	21	7	41	26
105	2023-04-15	30	9	46	31	288	2023-10-15	29	9	54	34
106	2023-04-16	32	12	52	32	289	2023-10-16	35	10	53	31
107	2023-04-17	12	8	36	30	290	2023-10-17	36	10	54	29
108	2023-04-18	17	8	33	22	291	2023-10-18	30	9	40	31
109	2023-04-19	35	8	22	19	292	2023-10-19	48	7	40	36
110	2023-04-20	46	10	47	39	293	2023-10-20	30	8	32	19
111	2023-04-21	26	8	11	12	294	2023-10-21	22	7	20	10
112	2023-04-22	20	8	29	19	295	2023-10-22	28	6	27	13
113	2023-04-23	16	8	29	18	296	2023-10-23	43	8	44	21
114	2023-04-24	31	6	28	20	297	2023-10-24	43	10	50	29
115	2023-04-25	27	4	13	11	298	2023-10-25	41	9	57	39
116	2023-04-26	28	4	14	11	299	2023-10-26	32	8	46	28
117	2023-04-27	35	5	36	23	300	2023-10-27	28	8	43	25
118	2023-04-28	23	4	25	17	301	2023-10-28	27	7	34	26

序号	日期	NO ₂	SO_2	PM ₁₀	PM _{2.5}	序号	日期	NO ₂	SO ₂	PM ₁₀	PM _{2.5}
119	2023-04-29	19	4	18	13	302	2023-10-29	34	8	39	27
120	2023-04-30	19	4	39	18	303	2023-10-30	33	8	47	29
121	2023-05-01	17	5	33	22	304	2023-10-31	37	9	46	29
122	2023-05-02	15	5	37	17	305	2023-11-01	38	10	60	31
123	2023-05-03	17	4	24	13	306	2023-11-02	38	8	57	28
124	2023-05-04	11	4	19	12	307	2023-11-03	35	9	61	31
125	2023-05-05	11	4	14	11	308	2023-11-04	22	8	42	23
126	2023-05-06	11	4	18	11	309	2023-11-05	25	8	35	15
127	2023-05-07	20	5	14	9	310	2023-11-06	32	8	39	20 18
128 129	2023-05-08 2023-05-09	36	5	18 36	16 30	311	2023-11-07 2023-11-08	26	10	45 49	20
130	2023-05-10	28	5	37	19	313	2023-11-08	32	8	50	19
131	2023-05-10	37	5	35	24	314	2023-11-09	38	8	40	18
132	2023-05-11	37	3	16	19	315	2023-11-10	33	8	14	10
133	2023-05-12	40	4	25	27	316	2023-11-11	17	8	12	6
134	2023-05-14	34	4	37	43	317	2023-11-13	17	8	13	7
135	2023-05-15	26	5	38	36	318	2023-11-14	28	8	29	15
136	2023-05-16	16	5	21	20	319	2023-11-15	38	10	42	24
137	2023-05-17	15	4	15	12	320	2023-11-16	29	9	28	13
138	2023-05-18	20	5	38	26	321	2023-11-17	25	8	52	17
139	2023-05-19	30	5	38	25	322	2023-11-18	37	9	60	20
140	2023-05-20	15	5	33	23	323	2023-11-19	44	12	66	30
141	2023-05-21	6	4	21	15	324	2023-11-20	53	11	86	45
142	2023-05-22	9	4	24	15	325	2023-11-21	63	10	81	48
143	2023-05-23	23	4	22	18	326	2023-11-22	46	10	60	37
144	2023-05-24	32	4	36	23	327	2023-11-23	54	9	85	57
145	2023-05-25	31	5	39	24	328	2023-11-24	51	11	78	47
146	2023-05-26	16	5	16	11	329	2023-11-25	39	9	97	50
147	2023-05-27	12	4	20	14	330	2023-11-26	37	9	65	35
148	2023-05-28	15	5	24	13	331	2023-11-27	52	10	79	52
149	2023-05-29	21	5	34	24	332	2023-11-28	35	10	62	41
150	2023-05-30	27	8	41	29	333	2023-11-29	63	10	78	44
151	2023-05-31	22	7	46	32	334	2023-11-30	40	10	60	36
152	2023-06-01	18	5	30	23	335	2023-12-01	25	8	51	30
153	2023-06-02	15	7	38	25	336	2023-12-02	37	9	50	26
154	2023-06-03	11	5	22	14	337	2023-12-03	44	11	52	28
155 156	2023-06-04	9 16	5	15 18	10 11	338 339	2023-12-04 2023-12-05	41	10	56 38	29 20
157	2023-06-06	27	5	11	10	340	2023-12-06	48	9	39	19
158	2023-06-07	29	4	12	10	341	2023-12-07	45	11	36	18
159	2023-06-08	22	4	8	7	342	2023-12-07	71	12	80	42
160	2023-06-09	24	4	10	9	343	2023-12-09	47	8	63	32
161	2023-06-10	18	4	11	13	344	2023-12-10	27	8	41	20
162	2023-06-11	16	6	20	14	345	2023-12-11	47	8	54	32
163	2023-06-12	15	6	20	15	346	2023-12-12	37	8	49	26
164	2023-06-13	15	6	22	20	347	2023-12-13	46	11	58	26
165	2023-06-14	22	4	14	19	348	2023-12-14	57	9	69	44
166	2023-06-15	25	5	23	18	349	2023-12-15	52	9	65	38
167	2023-06-16	22	5	17	15	350	2023-12-16	21	7	25	8
168	2023-06-17	22	5	4	7	351	2023-12-17	21	7	24	15
169	2023-06-18	27	5	11	12	352	2023-12-18	34	8	36	20
170	2023-06-19	16	4	8	10	353	2023-12-19	26	7	10	5
171	2023-06-20	12	5	13	12	354	2023-12-20	20	8	20	12
172	2023-06-21	10	5	15	10	355	2023-12-21	16	7	24	16
173	2023-06-22	5	4	10	9	356	2023-12-22	23	8	53	34
174	2023-06-23	20	5	14	9	357	2023-12-23	29	9	34	25
175	2023-06-24	19	5	16	12	358	2023-12-24	30	10	34	22
176	2023-06-25	15	4	10	10	359	2023-12-25	41	9	36	22
177 178	2023-06-26	27 27	5 6	17 16	16 13	360 361	2023-12-26	84 104	11 14	68 89	40 59
178	2023-06-27 2023-06-28	18	5	7	6	361	2023-12-27 2023-12-28	91	12	92	59 57
180	2023-06-29	18	6	12	11	363	2023-12-28	89	12	100	65
181	2023-06-29	10	5	11	10	364	2023-12-29	54	8	53	42
101	2023-00-30	10	J	11	10	304	2023-12-30	J4	o	23	4∠

序号	日期	NO ₂	SO_2	PM ₁₀	PM _{2.5}	序号	日期	NO_2	SO ₂	PM ₁₀	PM _{2.5}
182	2023-07-01	15	6	9	8	365	2023-12-31	60	9	81	73
183	2023-07-02	15	5	5	8						

4.5.3 环境空气质量现状补充监测

根据项目污染物排放情况,项目环境空气质量现状选取 TSP、NMHC、TVOC、二甲苯、臭气浓度、NOx 作为其他污染物的评价项目。项目委托广东凯恩德环境技术有限公司于 2025 年 01 月 14 日至 2025 年 01 月 20 日对项目所在地及光华村进行的环境空气质量现状监测,监测因子为 TSP、NMHC、TVOC、二甲苯、臭气浓度、NOx。

1、监测点位

根据顺德近 20 年 (2004 年至 2023 年) 气候统计数据, 顺德气象站主要风向为 SE、NNW、SSE, 其中以 SE 为主风向, 占到全年 9.5%左右, 监测点具体位置详见表 4.5-3, 监测布点图见图 4.3-1。

监测点名称	监测点	坐标/m		监测因子 监测时段 相对厂 Line Line Line Line Line Line Line Line		相对厂界距
鱼侧总名称	X	Y	监侧囚丁	监侧 的权	址方位	离/m
O1 项目所				2025年01月14		
在地	-17	-146	TOD NAME TWO	日至 2025 年 01	/	/
1			TSP、NMHC、TVOC、	月 20 日		
			二甲苯、臭气浓度、	2025年01月14		
O2 光华村 -358 673		NOx	日至 2025 年 01	西北	680	
				月 20 日		

表 4.5-3 其他污染物补充监测点位基本信息

注:以厂址为中心所在位置为坐标为原点(0.0)。

2、监测时间及频次

环境空气质量现状监测时间为 2025 年 01 月 14 日至 2025 年 01 月 20 日,各监测因子连续采样 7 天。TVOC 每天采样 1 次,获得 8 小时均值;TSP、NOx 每天采样 24h,获得 24 小时均值;非甲烷总烃、二甲苯、NOx 每天采样 1 次,获得小时均值;臭气浓度取最大测定值。

3、监测分析方法

环境空气质量各监测项目分析方法及检出限详见表 4.5-4。

表 4.5-4 环境空气监测采样及分析方法

检测项目	检测方法	使用仪器	检出限
总悬浮颗粒物	《环境空气 总悬浮颗粒物的测定重量	赛多利斯十万分之一天	7.0 μα/m³
心总行枞粒彻	法》HJ 1263-2022	平 BT25S	$7.0 \ \mu g/m^3$

检测项目	检测方法	使用仪器	检出限
总挥发性有机化	GBT 18883-2022 室内空气质量标准	气相色谱质谱联用仪	
合物 (TVOC)	(TVOC)附录 D(质谱法)	Trace1300 ISQ7000	
(邻、间、对)二 甲苯	《空气和废气监测分析方法》(第四版 增补版)国家环境保护总局(2003 年) 热脱附进样气相色谱法(B) 6.2.1.2	气相色谱仪 Nexis GC-2030	0.002 mg/m ³
氮氧化物	《环境空气氮氧化物(一氧化氮和二氧化氮)的测定盐酸萘乙二胺分光光度法》 (HJ 479-2009) 修改单	紫外可见分光光度计 UV-1801	0.003 mg/m ³
非甲烷总烃	《环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》HJ 604-2017	气相色谱仪 GC9790II	0.07 mg/m ³
臭气浓度	《环境空气和废气 臭气的测定 三点 比较式臭袋法》 HJ 1262-2022		10(无量纲)

4、评价方法

采用单因子指数法进行评价,其计算公式如下式所示,当 $I_i>1$,表明该大气污染物浓度超过了相应的评价标准:

 $I_i=C_i/C_{0i}$

式中: Ii--第 i 种污染物的污染指数;

Ci—第 i 种污染物的实测浓度或均值浓度, mg/m³;

 C_{0i} —第 i 种污染物的评价标准, mg/m^3 。

5、监测结果

监测期间气温气压、风向、风速等气象要素如表 4.5-5 所示。

表 4.5-5 大气环境监测期间气象参数记录表

采样时间	天气	温度℃	大气压 kPa	最大风速 m/s	风向
2025-01-14	阴	26.8	102.13	2.9	东北风
2025-01-15	阴	29.6	102.33	2.8	东北风
2025-01-16	晴	25.3	102.4	3.0	东北风
2025-01-17	晴	26.0	102.12	2.8	东北风
2025-01-18	晴	26.6	102.72	2.9	东北风
2025-01-19	晴	23.5	101.13	2.9	东北风
2025-01-20	晴	24.3	101.13	2.9	东北风

表 4.5-6 环境空气检测结果(单位: mg/m³, 单位注明者除外)

检测	检测项目	总悬浮颗粒物(μg/m³)	(邻、间、对) 二甲苯	TVOC (μg/m ³)	非甲烷总烃	氮氧	化物	臭气浓度(无量纲)
点位	采样时间	日均值	小时均值	日均值	小时均值	日均值	小时均值	一次值
	2025-01-14							
	2025-01-15							
	2025-01-16							
O1	2025-01-17							
	2025-01-18							
	2025-01-19							
	2025-01-20							
	2025-01-14							
	2025-01-15							
	2025-01-16							
O2	2025-01-17							
	2025-01-18							
	2025-01-19							
	2025-01-20		<u> </u>	<u> </u>	<u> </u>		ı	<u> </u>

备注: 检测结果低于检出限以"检出限(L)"表示。

6、其他污染物环境质量现状评价

①评价结果

表 4.5-7 其他污染物环境质量现状(监测结果)一览表

监测	污染物	平均时间	评价标准	监测浓度范	最大浓度	超标率	达标情
点位	行来初	一场时间	(mg/m^3)	围(mg/m³)	占标率/%	/%	况
	非甲烷总烃	1 小时平均	2			0	达标
	二甲苯	1 小时平均	0.2		_	0	达标
01 项	总悬浮颗粒物(μg/m³)	24 小时平均	300			0	达标
目所	总挥发性有机物(μg/m³)	8 小时平均	600		_	0	达标
在地	気気ル#m (/3)	24 小时平均	100		_	0	达标
	氮氧化物(μg/m³)	1 小时平均	250			0	达标
	臭气浓度 (无量纲)	一次值	20		_	0	达标
	非甲烷总烃	1 小时平均	2		_	0	达标
	二甲苯	1 小时平均	0.2		_	0	达标
00.14	总悬浮颗粒物(μg/m³)	24 小时平均	300		_	0	达标
O2 光 华村	总挥发性有机物(μg/m³)	8 小时平均	600		_	0	达标
子们	気気(V.₩m (~/3)	24 小时平均	100		_	0	达标
	氮氧化物(µg/m³)	1 小时平均	250		_	0	达标
	臭气浓度 (无量纲)	一次值	20			0	达标
备注:	未检出浓度取检出限 50%						

②环境空气质量现状分析

根据表 4.5-7, 非甲烷总烃 1 小时平均浓度满足《大气污染物综合排放标准详解》标准要求; 二甲苯 1 小时平均浓度满足《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D 要求; 总悬浮颗粒物日均浓度、氮氧化物日均浓度和 1 小时平均浓度均满足《环境空气质量标准》(GB3095-2012)二级标准及 2018 年修改单要求; 总挥发性有机物 8 小时平均浓度满足《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D 要求; 臭气浓度一次值浓度满足《恶臭污染物排放标准》(GB14554-93)要求。

4.5.4 小结

根据《佛山市生态环境局顺德分局关于发布<2023 年度佛山市顺德区生态环境状况公报>的通知》(佛环顺函〔2024〕44号),O₃(臭氧)浓度超过了《环境空气质量标准》(GB3095-2012)及 2018 年修改单中的二级标准限值,其他五项污染物指标浓度均达到《环境空气质量标准》(GB3095-2012)及 2018 年修改单二级标准限值。因此,顺德区大气环境质量属不达标区。在7天的监测时间内,本项目评价区域内TVOC、NMHC、二甲苯、TSP、臭气浓度、NOx等污染物均达到了相应环境空气质量标准中的要求。

4.6 声环境质量现状监测与评价

4.6.1 声环境质量现状监测

1、监测布点

根据《环境影响评价技术导则 声环境》(HJ 2.4-2021)的要求,声环境影响评价范围内无声环境敏感目标,故在本项目四周厂界外 1m 各设一个监测点,监测点布设见表 4.6-1,具体监测点位置见图 4.4-1。

序号	监测点名称	监测点位置
1	1	项目东面边界外1米处
2	▲2	项目南面边界外1米处
3	▲3	项目西面边界外1米处
4	▲ 4	项目北面边界外1米处

表 4.6-1 声环境质量现状监测点布设一览表

2、监测时间及频率

按照《声环境质量标准》(GB 3096-2008)中的有关规定,选在无雨、风速小于 5.5m/s 的天气进行测量,传声器设置户外 1 米处,高度为 1.2~1.5 米。

本项目委托广东凯恩德环境技术有限公司于 2025 年 01 月 18 日 \sim 2025 年 01 月 19 日连续监测 2 天,每天监测 2 次,监测时段为昼间(6:00-22:00)和夜间(22:00-06:00)。

3、监测与评价项目

实地调查表明,影响本项目所在地声环境质量的主要噪声源是工业机械噪声、机动车噪声等。根据这些噪声源的特点,可选取等效连续 A 声级作为声环境质量评价量,表达式为:

$$Leq = 10 \log(\frac{1}{n} \sum_{i=1}^{n} 10^{0.1Li})$$

式中: T—测量时间, 秒;

Lp(t)—瞬时声级,dB(A);

Li—第 i 次采样声级值,dB(A);

n—测点声级采样个数,个。

4、评价标准

项目所在地执行《声环境质量标准》(GB3096-2008)中3类标准。

5、监测统计结果及评价

本项目声环境质量现状监测统计结果详见下表 4.6-2。

表 4.6-2 项目噪声检测结果

单位: dB(A)

检测点位编号	检测	则时段	检测结果 L _{Aeq}	限值	达标情况
	2025-01-18	15:30-15:40		65	达标
1	2023-01-16	22:01-22:11		55	达标
A 1	2025-01-19	15:20-15:30		65	达标
	2023-01-19	22:02-22:12		55	达标
	2025-01-18	15:45-15:55		65	达标
A 2	2025-01-18	22:16-22:26		55	达标
A 2		15:35-15:45		65	达标
		22:17-22:27		55	达标
	2025-01-18	16:00-16:10		65	达标
▲3	2023-01-18	22:31-22:41		55	达标
A 3	2025 01 10	15:50-16:00		65	达标
	2025-01-19	22:32-22:42		55	达标
	2025-01-18	16:15-16:25		65	达标
A 4	2023-01-18	22:45-22:55		55	达标
A 4	2025-01-19	16:05-16:15		65	达标
		22:46-22:56		55	达标

天气状况:

2025-01-18: 晴, 东北风, 检测期间最大风速: 2.8m/s(昼间); 晴, 东北风, 检测期间最大风速: 2.9m/s(夜间)。 2025-01-19: 晴, 东北风, 检测期间最大风速: 2.7m/s(昼间); 晴, 东北风, 检测期间最大风速: 2.9m/s(夜间)。

4.6.2 小结

根据监测结果,厂界监测点位均满足《声环境质量标准》(GB3096-2008)中 3 类 声环境质量标准。

4.7 生态环境现状调查与评价

4.7.1 评价范围与调查内容

1、调查范围

遵循生态系统完整性原则,综合考虑项目与区域气候、水文、生物互相作用关系,涵盖评价项目全部活动的直接影响区和间接影响区。根据生态影响评价技术导则的相关要求,本次生态调查的范围确定为项目所在地及项目周围 200m 范围内。同时以地理单元界限为参考,充分体现周边生态完整性。

2、调查内容

调查内容包括影响区域内涉及的生态系统类型、结构、功能,以及相关气候、土壤、 地形地貌、水文地质等非生物因子特征;重点调查受保护的珍稀濒危物种、关键种、关 键种、土著种、建群种和地方特有种;调查影响区域内已经存在的制约本区域可持续发 展的主要生态问题,如水土流失、自然灾害、生物入侵和污染危害等。

4.7.2 土地利用状况

本项目用地现状为工业用地,四周规划为工业用地,详见图 2.5-4。

4.7.3 陆生植被现状调查

本项目所在地位于佛山市顺德区杏坛镇,人为活动频繁,且项目评价范围内大部分 土地已经开发利用或已经平整待建,原有植被被人工景观植被代替。在本次调查中,未 发现珍稀濒危的动植物,未发现国家重点保护的动植物。

5 环境影响预测与评价

5.1 施工期环境影响分析与评价

本项目厂房一尚未建设,其余厂房已建成;在建设期主要污染物有大气污染物、废水、噪声以及固体废物。

大气污染物: 施工机械、运输车辆产生的扬尘及其排放的尾气。

废水:主要是建筑施工人员的生活污水、地基挖掘时的地下水和浇注砼后的冲洗水等,施工人员的生活污水主要污染因子为 COD_{Cr}、氨氮;施工车辆、施工机械的洗涤水主要污染因子为石油类、悬浮物。

噪声: 各种建筑施工机械运转噪声。

固体废物:施工期间产生弃土和弃渣,在运输各种建筑材料过程中以及在工程完成后产生的建筑垃圾以及各种塑料袋、废纸、玻璃瓶等生活垃圾。

5.1.1 施工期大气环境影响分析及防治措施

本项目建设过程中有少量的挖土、填土作业,其主要的大气污染源为:基础开挖、运输车辆和施工机械等产生扬尘;建筑材料(水泥、石灰、砂石料)的运输、装卸、储存和使用过程产生扬尘;各类施工机械和运输车辆所排放的废气等。

5.1.1.1 施工期扬尘影响及污染防治措施

(1) 施工期扬尘环境影响

开挖基础时,若土壤含水率较低,空气湿度较小,日照强烈,则在施工过程因土壤被扰动而较易产生扬尘,其起尘量视施工场地情况不同而不同,一般来说距施工场地200m 范围内贴地环境空气中 TSP 浓度可达 5~20mg/m³, 当施工区起风并且风速较大时,扬尘可以影响到距施工场地500m 左右的范围; 车辆运输土方过程中,若没有防护措施则会导致土方漏洒及出现风吹扬尘; 漏洒在运输路线上的土覆盖路面,晒干后又因车辆的作用和风吹再次扬尘; 粉状建筑材料运输、装卸、储存和使用过程也会产生扬尘。

施工期扬尘是施工活动危害环境的主要因素,其危害性是不容忽视的。悬浮于空气中的扬尘被施工人员和影响范围内人群吸入,将严重影响人群的身心健康。同时,扬尘飘落在各种建筑物和树木枝叶上,也影响景观。

(2) 施工扬尘的防治措施

施工期扬尘是施工活动危害环境的主要因素,其危害性是不容忽视的。悬浮于空气

中的扬尘被施工人员和影响范围内人群吸入,且扬尘可能携带大量的病菌、病毒,将严重影响人群的身心健康。因此,施工单位在施工过程中必须采取相应的减尘、降尘措施,来减轻扬尘对周边环境敏感点的影响。

根据《佛山市扬尘污染防治条例》(2020修正)施工单位应采取以下措施减缓扬尘 污染:

- (一)将扬尘污染防治措施、负责人、扬尘监督管理主管部门、举报方式与途径等信息张贴在施工围挡外围,接受社会监督;
- (二)在施工现场配备扬尘污染防治管理人员,按日做好包括覆盖面积、出入洗车次数及持续时间、洒水次数及持续时间等内容的扬尘污染防治措施实施情况记录;
- (三)在施工工地周围设置连续硬质密闭围挡或者围墙。施工工地位于城市主要干道、景观地区、繁华区域的,围挡或者围墙高度不低于两百五十厘米;其余区域的,围挡或者围墙高度不低于一百八十厘米。围挡底部设置不低于三十厘米的硬质防溢座。工程竣工验收阶段,需要拆除围挡、围墙及防溢座的,采取有效措施防治扬尘污染。不具备条件设置围挡或者围墙的,采取有效的扬尘污染防治措施;
- (四)施工工地出入口通道不得有泥浆、泥土和建筑垃圾;出入口内侧应设置混凝土挠捣的洗车设施和沉淀池,配备高压冲洗装置;确实不具备条件设置混凝土挠捣的洗车设施和沉淀池的,应当设置车辆冲洗设施,确保驶离工地的机动车冲洗干净;
- (五)按时对作业的裸露地面进行洒水;四十八小时内不作业的裸露地面采取定时洒水等扬尘污染防治措施;超过四十八小时不作业的,采取覆盖等扬尘污染防治措施;超过三个月不作业的,采取绿化、铺装或者遮盖等扬尘污染防治措施;
- (六)在施工工地的出入口、材料堆放区、材料加工区、生活区、主要通道等区域进行硬底化,并安装喷淋设备等扬尘污染防治设施;
- (七)在施工工地堆放的砂石等工程材料密闭存放或者覆盖;及时清运建筑土方、 工程渣土和建筑垃圾,无法及时清运的,采用封闭式防尘网遮盖,并定时洒水;不得将 建筑垃圾交给个人或者未经核准从事建筑垃圾运输的单位运输;
- (八)土石方、地下工程、拆除和爆破等易产生扬尘的工程作业时,采取洒水、湿 法施工等扬尘污染防治措施;
 - (九)设置泥浆池、泥浆沟,确保施工作业产生的泥浆不溢流;
- (十)在施工工地依法使用袋装水泥或现场搅拌混凝土的,采取封闭、降尘等有效的扬尘污染防治措施;运送散装物料、建筑垃圾和工程渣土的,采取覆盖措施,禁止高

空抛掷、扬撒。

另外,建筑材料运输车辆的行驶会产生大量的扬尘,扬尘产生量与车速和路面清洁度有关:在同样路面清洁情况下,车速越快,扬尘量越大;而在同样车速情况下,路面清洁度越差,则扬尘量越大。根据类比调查,一般情况下,施工场地、施工道路在自然风作用下产生的扬尘所影响的范围在 100m 以内。

抑制车辆行驶产生的扬尘的一个简洁有效的措施是洒水。如果在施工期内对车辆行驶的路面实施洒水抑尘,每天洒水 4~5 次,可使扬尘减少 70%左右。下表为施工场地洒水抑尘的试验结果。由该表数据可看出对施工场地实施每天洒水 4~5 次进行抑尘,可有效地控制施工扬尘,并可将 TSP 污染距离缩小到 20~50m 范围。

距离	5m	20m	50m	100m	
TSP 小时平均浓度	不洒水	10.14	2.89	1.15	0.86
TSP 小时平均浓度	洒水	2.01	1.40	0.67	0.60

表 5.1-1 施工场地洒水抑尘试验结果 单位: mg/m3

综上所述,在施工期对运输的道路及时清扫和浇水,对易起尘物料采取遮盖,并加强施工管理,配置工地细目滞尘防护网,使用预拌混凝土等措施后,可最大程度减少本项目施工期扬尘排放量,避免对周围大气环境产生明显的不利影响。

5.1.1.2 施工机械和运输车辆排放的尾气

施工机械一般采用柴油作为动力,施工运输车辆如自卸车和载重汽车等通常是大型柴油车,作业时会产生一些废气,其中主要污染物为氮氧化物、二氧化硫和一氧化碳,这些酸性气体的排放将对项目所在区域的大气环境质量产生一定程度的影响。

施工期燃油机械设备较多,对燃柴油的大型运输车辆、推土机,需要安装尾气净化器,尾气应达标排放,对车辆的尾气排放进行监督管理。

从施工场地周边情况来看,场地四周为工业厂房、空地等,此外,区域高层建筑较少,空气稀释能力较强,燃油烟气及汽车尾气排放后,经空气迅速稀释扩散,基本不会对附近村落等敏感点处的环境空气质量造成明显影响。

5.1.2 施工期水环境影响分析及防治措施

5.1.2.1 施工期产生的废水

本项目不设施工营地,施工人员的生活活动依托附近居民住宅区,施工人员生活污水依托居民住宅区三级化粪池进行收集治理,经处理后,排放至杏坛污水处理厂处理。

施工期废水主要是来自施工废水。

施工废水包括泥浆水、机械设备运转的冷却水、车辆和机械设备洗涤水等。生活污水包括施工人员冲洗手脚及身上的粉尘、泥巴、混凝土浆料等产生的污水。由于施工活动的周期一般不会太长,故施工污水的环境污染往往不被人们所重视,其实施工污水类别较多,某些水污染物的浓度可能还比较高,处置不当会对施工场地周围的水环境产生短时间的不良影响,如:

- ①施工场地的暴雨地表径流、开挖基础可能排泄的地下水等,将会携带大量的泥沙,随意排放将会使纳污水体悬浮物出现短时间的超标。
- ②施工机械设备(空压机、发电机、水泵)冷却排水,可能会含有热,直接排放将使纳污水体受到物理污染。
- ③施工车辆、施工机械的洗涤水含有较高的石油类、悬浮物等,直接排放将会使纳污水体受到一定程度的污染。

5.1.2.2 施工期水污染防治措施

(1) 建设导流沟

在施工场地建设临时导流沟,将暴雨径流引至雨水管网排放,避免雨水横流。

(2) 建设蓄水池

在施工场地建设临时蓄水池,将开挖基础产生的地下排水收集储存,另外也可以收 集施工废水,待静置后可回用于施工场地和土方的洒水抑尘,项目施工废水不外排。

(3) 要严格按施工图进行施工,不得将雨水管和污水管连接。

严格按照上述污染防治措施进行施工,本项目施工期所产生的废水将不会对周围环境造成明显不良影响影响。

5.1.3 施工期噪声环境影响分析及防治措施

建设期噪声主要分为机械噪声、施工作业噪声和施工车辆噪声。机械噪声主要由施工机械所造成,如液压挖掘机、电动挖掘机、轮式装载机等,多为点声源。根据《环境噪声及振动控制工程技术导则》,施工阶段常见施工设备的噪声源强见下表。

5.1.3.1 施工期噪声对周边环境的影响分析

噪声从声源传播到受声点,受传播距离、空气吸收、阻挡物的反射与屏障等因素的 影响而产生衰减。用 A 声级进行预测时,其计算公式如下:

$$L_A(r) = L_A(r_0) - (A_1 + A_2 + A_3 + A_4)$$

式中: LA(r)为声源r处的A声级;

 $LA(r_0)$ 为参考位置 r_0 处的 A 声级;

A₁ 为声波几何发散引起的 A 声级衰减量;

A2 为声屏障引起的 A 声级衰减量;

A3 为空气吸收引起的 A 声级衰减量;

A4 为附加衰减量。

在计算中主要考虑 A₁ 声波几何发散引起的 A 声级衰减量,点源其计算式为:

$$A_1=20lg (r/r_0)$$

$$LA (r) = LA (r_0) -20lg (r/r_0)$$

多个声源的噪声对同一点的声级公式:

$$L_{A\overset{\text{id}}{\sim}} = 101g\left(\sum_{i=1}^{n} 10^{L_{ai}/10}\right)$$

式中: LA_i 为第 i 个噪声源声级(分贝); n 为声源数。

噪声值与距离的衰减关系见下表,各种施工机械施工期噪声预测结果及建筑施工场界环境噪声排放标准见下表,由预测结果可以看出,在距离项目的边界 100 米处,施工期的昼间噪声值均可以符合《建筑施工场界环境噪声排放标准(GB12523-2011)》昼间的要求,但夜间噪声会超标。

表 5.1-2 噪声值与距离的衰减关系

距离 r/r ₀ (m)	2	4	8	12	16	20	30	40
A1 dB (A)	6.0	12.0	18.1	21.6	24.1	26.0	29.5	32.0

表 5.1-3 各种施工机械在不同距离处的噪声预测值(单位: dB(A))

	History Next In		各距离噪声预测值								
设备名称	距离源点 r₀=5m	r	10m	20m	40m	60m	80m	100m	150m	200m	
	10-5111	r/r ₀	2	4	8	12	16	20	30	40	
液压挖掘机	86	/	80	74	67.9	64.4	61.9	60	56.5	54	
电动挖掘机	83	/	77	71	64.9	61.4	58.9	57	53.5	51	
轮式装载机	92.5	/	86.5	80.5	74.4	70.9	68.4	66.5	63	60.5	
推土机	85.5	/	79.5	73.5	67.4	63.9	61.4	59.5	56	53.5	
振动夯锤	96	/	90	84	77.9	74.4	71.9	70	66.5	64	
静力压桩机	72.5	/	66.5	60.5	54.4	50.9	48.4	46.5	43	40.5	
风镐	90	/	84	78	71.9	68.4	65.9	64	60.5	58	

混泥土输送泵	91.5	/	85.5	79.5	73.4	69.9	67.4	65.5	62	59.5
商砼搅拌车	87.5	/	81.5	75.5	69.4	65.9	63.4	61.5	58	55.5
混泥土振捣器	84	/	78	72	65.9	62.4	59.9	58	54.5	52
云石机、角磨机	93	/	87	81	74.9	71.4	68.9	67	63.5	61
空压机	90	/	84	78	71.9	68.4	65.9	64	60.5	58

执行标准:《建筑施工场界环境噪声排放标准(GB12523-2011)》(昼间≤70 dB(A),夜间≤55 dB(A))

5.1.3.2 施工期间噪声影响防治措施

由上表可知,单台施工机械约在 100m 以内昼间噪声值才基本能达到施工阶段场界噪声限值。施工期间,施工机械是组合使用的,噪声影响更大。施工期间应严格控制施工期的噪声。另外,各种施工车辆运行产生的交通噪声短期内将对道路沿线产生一定影响。

根据以上分析,要求建设单位在施工期采取以下相应措施:

- (1) 尽量选用先进施工工艺以及低噪声机械设备或带隔声、消声的设备。
- (2) 施工运输车辆进出应合理安排,尽量避开项目附近的村庄,减少影响。
- (3)项目施工中禁止使用高噪声的振动夯锤等,避免对周边敏感点造成明显影响。
- (4) 合理安排高噪声设备运行时间,禁止高噪声设备在作息时间,即中午(12:00~14:00) 和夜间(22:00~6:00)作业,施工期不会对其产生影响。

5.1.4 施工期固体废物环境影响分析及防治措施

5.1.4.1 施工期间固体废物环境影响

施工期间需开挖土方,会产生弃土和弃渣,在运输各种建筑材料(如砂石、水泥、砖、木材等)过程中以及在工程完成后,所残留的不少废建筑材料。

项目产生的建筑垃圾主要成分为废弃的土沙石、水泥、木屑、碎木块、弃砖、纤维、碎玻璃、废金属、废瓷砖等。如不妥善处理这些建筑固体废物,则会阻碍交通,污染环境。在运输过程中,车辆如不注意清洁运输,沿途撒漏泥土,污染街道和公路,影响市容和交通。

弃土在堆放和运输过程中,如不妥善处置,则会阻碍交通,污染环境。清运车辆行走市区道路,不但会给沿线地区增加车流量,造成交通堵塞,尘土的撒漏也会给城市环境卫生带来危害。开挖弃土如果无组织堆放、倒弃,如遇暴雨冲刷,则会造成水土流失。在施工场地,雨水径流以"黄泥水"的形式进入市政排水沟,沉积后将会堵塞排水沟。在

靠近河涌地段,泥浆水直接排入河涌,增加河水的含砂量,造成河床淤积。同时,泥浆水还夹带施工场地上的水泥、油污等污染物进入水体,造成水体污染。

生活垃圾则包括塑料袋、废纸、各种玻璃瓶等。这些固废处置不当将会影响景观, 污染土壤和水体, 生活垃圾还会散发恶臭, 影响周围空气环境。

5.1.4.2 施工期间固体废弃物处置措施

- (1)施工营地设置生活垃圾集中收集点,由环卫部门定期清运处理;拆迁建筑垃圾委托有资质的运输单位运送至政府指定建筑垃圾处理场统一处理。
- (2)固体废物临时堆场集中设置,堆场四周设置围挡防风阻尘,堆垛配备篷布遮盖并定期洒水保持湿润,堆场四周开挖排水沟,排水沟末端设置沉淀池,截留雨水径流。
- (3)固体废物的运输车辆应配备顶棚或遮盖物,装运过程中应对装载物进行适量 洒水,采取湿法操作;运输桥梁施工废渣的车辆车厢应具有较好的密封性,不得有渗漏 现象。
- (4)对余泥渣土必须严格执行佛山市相关余泥渣土排放管理的规定,向佛山市余泥渣土排放管理处提出申请,按规定办理好余泥渣土排放的手续,获得批准后方可在指定的受纳地点弃土。

5.1.5 生态环境保护措施

本项目生态影响主要表现在水土流失。因此针对施工期对生态环境的影响,建议采取以下生态环境保护措施。

(1) 水土流失防治

施工期内水土流失防治措施主要体现在 3 个方面: 一是土建施工过程中的防护。施工场地可采取围墙封闭、设置排水沟、沉沙地、雨水管道等; 二是对动土区域的临时防护,可采取块石、草包袋、临时围墙、暗沟拦挡等措施,或在动土区撒播草籽临时绿化等; 三是施工后期工程完成后,应采取场地清理、土地平整、植树种草等措施,尽快对裸露地表进行植被恢复。此外,尽量避免在雨期施工,已减轻水土流失的影响。

(2) 加强建设用地绿化

规划项目在建成后厂区内应按照有关规定进行绿化,包括工程区绿化和周边区域的 绿化;绿化要与建筑及周围环境相协调,可选择适应能力较强、生长速度较快、对有害 气体抗性较强的植物种。如工程区内的植物种可选择垂柳、侧柏、油松、核桃等树种和 观赏花卉,并配以绿篱及建筑小品,同时尽可能多种地被植物。厂区周围及道路两侧种植行树,可选择广玉兰、阴香、大叶紫薇、银桦、海桐、蒲桃、红背桂、大叶相思等抗污染、吸收污染物质能力较强的绿化植物种。

(3) 在整个施工期间,应做好施工期环境监理工作。

5.2 运营期水环境影响预测与评价

5.2.1 地表水环境影响评价

本项目生产废水主要为水帘柜废水、喷淋塔废水,均委托区内有相应工业废水处理能力的单位回收处置,不外排。项目外排废水为生活污水,生活污水可纳入杏坛污水处理厂进行处理,为间接排放。

本项目属于水污染影响型建设项目,地表水环境影响评价工作等级为三级 B。根据《环境影响评价技术导则 地表水环境》(HJ2.3-2018),水污染影响型三级 B 评价可不进行水环境影响预测,仅进行地表水环境影响评价,主要评价内容包括:

- a) 水污染控制和水环境影响减缓措施有效性评价;
- b) 依托污水处理设施的环境可行性评价。

5.2.1.1 排污方案、排放标准

(1) 排污方案

餐厨废水经隔油隔渣处理、生活污水经三级化粪池处理,处理达标后排至杏坛污水 处理厂处理。

(2) 排放标准

生活污水经预处理达到广东省地方标准《水污染物排放限值》(DB44/26-2001)第 二时段三级标准后,通过市政污水管网排入杏坛污水处理厂进一步处理。

杏坛污水处理厂尾水达到国家标准《城镇污水处理厂污染物排放标准》 (GB18918-2002)一级 A 标准及广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准的较严值,尾水处理达标后排入北马河,然后汇入顺德支流。

5.2.1.2 废水环境影响分析

餐厨废水经隔油隔渣处理、生活污水经三级化粪池处理达到广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段三级标准后,通过市政污水管网排入杏坛污水处理厂进一步处理,对周围环境影响不大。

5.2.1.3 水污染控制和水环境影响减缓措施有效性评价

项目产生生活污水经三级化粪池处理,处理达标后排至杏坛污水处理厂处理。

生产废水经混凝沉淀处理设施处理后回用,减少更换频次,更换的生产废水委托区 内有相应工业废水处理能力的单位回收处置,不外排。

根据报告 6.1.2 章节"废水处理设施技术经济可行性分析"可知,本项目生活污水经处理后,能够达到广东省《水污染物排放限值》(DB44/26-2001)中第二时段三级标准。因此,本项目采取的水污染控制和水环境影响减缓措施是有效的。

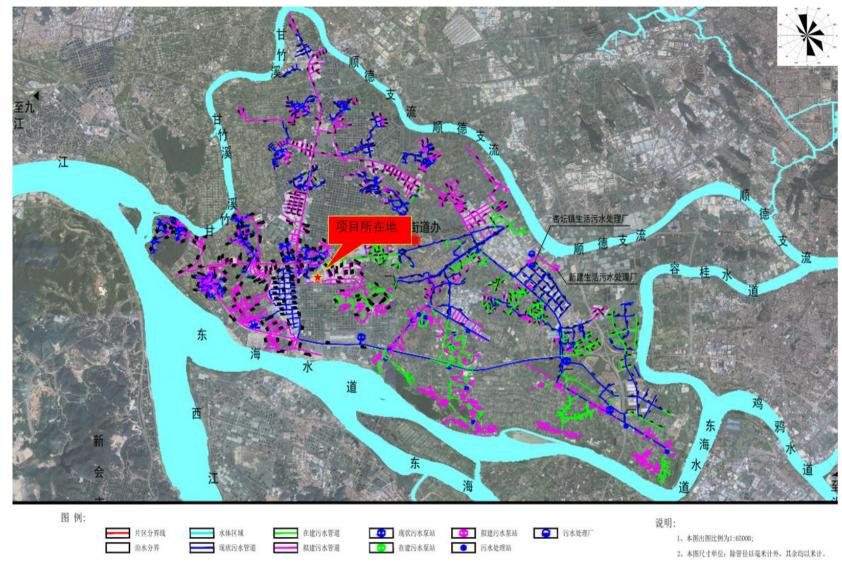


图 5.2-1 杏坛污水处理厂纳污范围图

5.2.1.4 污染物排放量统计

表 5.2-1 废水类别、污染物及污染治理设施信息表

序	废水类		排放去		ì	污染治理设施			排放口设置	
号	別	污染物种类	向	排放规律		排放口 编号	是否符合要 求	排放口类型		
1	综合生 活污水	pH、COD _{Cr} 、BOD ₅ 、 NH ₃ -N、SS、LAS、 TN、TP	排入杏 坛污水 处理厂	间断排放, 排放期间流 量稳定	/	生活污水 预处理设 施	隔油隔 渣、三级 化粪池	DW00 1	/	☑ 企业总排 □雨水排放 □清净下水排放 □温排水排放 □车间或车间处理设施排放口

表 5.2-2 废水间接排放信息表

序	排放口编	排放口地	也理坐标	废水排放量	排放	排放规	间歇排		受纳污水处理厂	一信息	
号	号	经度	纬度	及が非成 重 /(万 t/a)	去向	律	放时段	名称	污染物种类	国家或地方污染物排放 标准浓度限值/(mg/L)	
										pН	6~9
									COD_{Cr}	40	
			,	0.99	杏坛 污水 处理		工作日	杏坛污水 处理厂	BOD_5	10	
1	生活污水					间断排			NH ₃ -N	5	
	DW001		,	0.77		放	10h		SS	10	
)		1		LAS	0.5	
									TN	15	
									TP	0.5	

表 5.2-3 废水污染物排放标准执行表

序	排放口	污染物种类	国家或地方污染物排放标准及其他	!按规定商定的排放协议
号	编号	17米10/17天	名称	浓度限值/(mg/L)
		рН		6~9
		$\mathrm{COD}_{\mathrm{Cr}}$		500
	生活污	BOD ₅	《水污染物排放限值》	300
1	水	NH ₃ -N	(DB44/26-2001) 中的三级标准	/
1	DW00	SS	(第二时段)	400
	1	LAS	(知一門权)	20
		TN		/
		TP		/

表 5.2-4 废水污染物排放信息表

序号	排放口编号	污染物种类	排放浓度 (mg/L)	全厂日排放量(kg/d)	全厂年排放量 (t/a)			
		рН	6~9	/	/			
		COD_{Cr}	40	1.200	0.396			
	ルンチンニート	BOD ₅	10	0.300	0.099			
1	生活污水	NH ₃ -N	5	0.150	0.050			
	DW001	SS	10	0.300	0.099			
		LAS	0.5	0.015	0.005			
		TN	15	0.450	0.149			
		TP	0.5	0.015	0.005			
			рН					
			$\mathrm{COD}_{\mathrm{Cr}}$					
			BOD ₅		0.099			
全厂	_ 排放口合计		NH ₃ -N		0.050			
			SS		0.099			
			LAS					
			TN	·	0.149			
ا مد			TP		0.005			

注:排放浓度以污水厂出水排放标准进行计算。

5.2.1.5 地表水环境影响评价自查表

表 5.2-5 地表水环境影响评价自查表

工作	内容	自査项目					
	影响类型	水污染影响型回;水文要素影响型 🗆					
	水环境保	饮用水水源保护区 □; 饮用水取水口 □; 涉水的自然保护区	□; 重要湿地 □;				
影响	护目标	重点保护与珍稀水生生物的栖息地 □; 重要水生生物的自然剂	^立 卵场及索饵场、越	冬场和洄游通道、	天然渔场等渔业水体 🗅 ; 涉水的风景名胜区 🗅 ; 其他 🗅		
识别	影响途径	水污染影响型		水文要素影响型			
别	彩响坯任	直接排放 🗅 ;间接排放 🗹 ;其他 🗅		水温 □; 径流 □	;水域面积 □		
	影响因子	持久性污染物 □; 有毒有害污染物 □; 非持久性污染物☑; pH 富营养化 □; 其他 □	「值☑;;热污染 □;	水温 □; 水位(水深) 🗅; 流速 🗅; 流量 🗅; 其他 🗅		
评价等	至474	水污染影响型		水文要素影响型			
- וערדע	于纵	一级 □; 二级 □; 三级 A □; 三级 B☑		一级 🗅; 二级 🗅	;三级 □		
	区域污染	调查项目		数据来源			
	源	己建 □; 在建 □; 拟建 □; 其他 □	拟替代的污染源□	排污许可证 □; ∃ 排放口数据 □; ∃	环评 □; 环保竣工验收 □; 既有实测 □; 现场监测 □; 入河 其他 □		
	受影响水	调查时期		数据来源			
	体水环境	丰水期 🗹; 平水期 🗹; 枯水期 🗹; 冰封期 🗅		上太环培 伊 珀宁绿	管部门 ☑;补充监测 □;其他 □		
	质量	春季 ☑; 夏季 ☑; 秋季 ☑; 冬季 ☑		生态环境体扩土	目的11 区;作几曲例 口;夹他 口		
现状调查	区域水资 源开发利 用状况	未开发 □; 开发量 40%以下 □; 开发量 40%以上 □					
		调查时期		数据来源			
	水文情势 调查	丰水期 🗅; 平水期 🗅; 枯水期 🗅; 冰封期 🗅		北行政主管郊门	□; 补充监测 □; 其他 □		
	#1E	春季 🗅; 夏季 🗅; 秋季 🗅; 冬季 🗅		水竹以土自即门	口;竹儿血树口; 来他口		
		监测时期		监测因子	监测断面或点位		
	补充监测	丰水期 🗅; 平水期 🗅; 枯水期 🗅; 冰封期 🗅		()	 监测断面或点位个数 () 个		
		春季 🗅; 夏季 🗅; 秋季 🗅; 冬季 🗅	,	画例即画匁点也 奴 (
现	评价范围	河流:长度()km;湖库、河口及近岸海域:面积(
现状评价	评价因子	(水温、pH 值、溶解氧、高锰酸盐指数、化学需氧量、五日生化需氧量、氨氮、总磷、石油类、粪大肠菌群、铜、锌、氟化物、硒、砷、汞、镉、六价铬、铂 氰化物、挥发酚、阴离子表面活性剂、硫化物)					
价	评价标准	河流、湖库、河口: I类 □; II类 □; IV类 □; V类☑					

工作	 内容	自査项目							
		近岸海域:第一类□;第二类□;第三类□;第四类□							
		规划年评价标准()							
	/亚 /시 n나 #미	丰水期回; 平水期回; 枯水期 回; 冰封期 □							
	评价时期	春季 🗹; 夏季 🗹; 秋季 🗹							
		水环境功能区或水功能区、近岸海域环境功能区水质达标状况 🗅: 达标 🗹; 不达标 🗅	达标区 ☑						
		水环境控制单元或断面水质达标状况 🗅: 达标🗹 ; 不达标 🗅	不达标区 🗆						
		水环境保护目标质量状况 ロ: 达标 ロ; 不达标 ロ							
		对照断面、控制断面等代表性断面的水质状况 口: 达标 口; 不达标 口							
	评价结论	底泥污染评价 🗆							
		水资源与开发利用程度及其水文情势评价 🗆							
		水环境质量回顾评价 🗆							
	流域(区域)水资源(包括水能资源)与开发利用总体状况、生态流量管理要求与现状满足程度、 建设项目占用水域空间的水流状况与河湖演变状况 ロ								
	预测范围	河流:长度 () km; 湖库、河口及近岸海域: 面积 (
	预测因子								
		丰水期 🗅;平水期 🗅;枯水期 🗅;冰封期 🗅							
	预测时期	春季 🗅 ; 夏季 🗅 ; 秋季 🗅 :							
影响		设计水文条件 🗅							
预		建设期 🗅;生产运行期 🗅;服务期满后 🗅							
测	预测情景	正常工况 🗅 ; 非正常工况 🗅							
	1XW1H3X	污染控制和减缓措施方案 🗆							
		区(流)域环境质量改善目标要求情景 🗆							
	预测方法	数值解 □: 解析解 □; 其他 □							
		导则推荐模式 □: 其他 □							
影响评价	水污染控制和水环 影境影响減 (支) (大) (
וע	水环境影	排放口混合区外满足水环境管理要求 □							
	响评价 水环境功能区或水功能区、近岸海域环境功能区水质达标 🗹								

工作	内容	自査项目						
		满足水环境保护目标水域水环境质量要求 🗆						
		水环境控制单元或断面水质达标 🗆						
		满足重点水污染物排放总量控制指标要求,重点行业建设项目	╡,	主要污染	と物排放满足等	穿量或减	量替	代要求 🗆
		满足区(流)域水环境质量改善目标要求 □						
		水文要素影响型建设项目同时应包括水文情势变化评价、主要	要水文	文特征值	影响评价、生	态流量符	夺合作	生评价 🗆
		对于新设或调整入河(湖库、近岸海域)排放口的建设项目,	应包	包括排放	口设置的环境	合理性说	平价	
		满足生态保护红线、水环境质量底线、资源利用上线和环境流	隹入清	青单管理:	要求図			
	污染源排	污染物名称		排放量	/ (t/a)		排放	改浓度/(mg/L)
	放量核算	(COD _{Cr} , BOD ₅ , NH ₃ -N, SS, LAS, TN, TP)			5、0.099、0.05 0.005、0.149、		(4	0, 10, 5, 10, 0.5, 15, 0.5)
	替代源排	污染源名称		5许可 扁号	污染物名 称	排放量 (t/a)	1/	排放浓度/(mg/L)
	放情况	()	()	()	()	()
	生态流量	生态流量: 一般水期 () m³/s; 鱼类繁殖期 () m³/s;	其他	():	m^3/s			
	确定	生态水位:一般水期() m; 鱼类繁殖期() m; 其他	() m				
	环保措施	污水处理设施 ☑; 水文减缓设施 □; 生态流量保障设施 □;	区域	削减 口;	依托其他工程	呈措施「];	其他 🗆
			环块	竟质量		污染源	Ē	
防治措施	监测计划	监测方式	手刻		动 🖙 无监	手动口	; É	目动 □; 无监测 ☑
措施		监测点位	()		()		
)JE		监测因子	()		()		
	污染物排 放清单							
评价统	结论	可以接受☑;不可以接受 □						
注: '	'□"为勾选项,	可√; "()"为内容填写项; "备注"为其他补充内容。						

5.2.2 运营期对地下水的影响分析

5.2.2.1 地下水流向

根据表 4.3-3 地下水水位监测结果及图 4.3-2 区域地下水流向图,项目所在区域地下水流向为自西北向东南。

5.2.2.2 地下水污染源

本项目所在区域地下水功能为属于珠江三角洲佛山南海大沥至顺德勒流地质灾害 易发区。据现场调查,项目周边均以自来水为饮用水源,无集中式生活饮用水源地。

项目所在区域对地下水的污染源有生活污染源与工业污染源,部分生活污水管网收集未到区域,生活污水经三级化粪处理便排入河涌,工业污染源主要是周边企业事故情况下或生产设施破损造成废水或污染物下渗进入地下水。

由于该地区地下水与内河和海洋联系较好,所以地下水可能会因此而受到污染。

5.2.2.3 地下水污染途径

污染物对地下水的影响主要是由于降雨或废水排放等通过垂直渗透进入包气带,进入包气带的污染物在物理、化学和生物作用下经吸附、转化、迁移和分解后输入地下水。因此,包气带是连接地面污染物与地下含水层的主要通道和过渡带,既是污染物媒介体,又是污染物的净化场所和防护层。此外,地下水能否被污染与污染物、土壤的种类和性质有关。一般说来,土壤粒细而紧密,渗透性差,则污染慢;反之,颗粒大松散,渗透性能良好,则污染重。

污染物从污染源进入地下水所经过的路径称为地下水污染途径,地下水污染途径是 多种多样的。根据项目所处区域的地质情况,本项目可能对地下水造成污染的泄漏源和 污染途径主要有以下几方面:

(1) 泄漏源

项目地下水污染泄漏源包括生活污水、生产废水、涂料、稀释剂、异丙醇等化学品。

(2) 污染涂径

以上泄漏源的污染途径主要为:

- 1) 生活污水经三级化粪池、食堂废水经隔油隔渣或管道泄漏进入土壤浸入地下水;
- 2)生产废水在管道输送管道破裂、工业废水暂存池池体破损造成泄漏,加上防腐

防渗层破坏,泄漏的废水通过垂直入渗进入地下水。

3)涂料、稀释剂、异丙醇等液体化学品等在储存、输送、运输、装卸等过程中发生泄漏,加上防腐防渗层破坏,泄漏的化学品通过垂直入渗进入地下水。

5.2.2.4 正常工况下地下水环境影响定性分析

- (1) 废水渗漏对地下水的影响分析
- 一般情况下,废水渗漏主要考虑水池容纳构筑物(如废水暂存池等)底部破损渗漏 和排水管道渗漏两个方面。

本项目水池构筑物(池体)为砖混或钢制,并设计了防渗防腐功能。建设时严格按照相应规范要求施工并在竣工验收时严把质量关,水池容纳构筑物底部无破损,对地下水产生的影响有限。

对于排水管道渗漏的情况,主要由以下三个方面造成:

- ①排水管和配件本身质量原因产生的裂痕、砂眼所产生的渗漏:
- ②管道连接安装操作不规范、技术不熟练造成的渗漏:
- ③管道预留孔穿越建筑楼面所引起的渗漏。

针对以上三种常见的排水管道渗漏情况,建设单位需认真做好管道外观检测和通水 试验,一旦发现管壁过薄、内壁粗糙有裂痕、砂眼较多的管道应予以更换;认真检查排 水管设计,根据管径尺寸、设置固定垂直、水平支架、避免管道偏心、变形而渗水,地 下埋管应设砖墩支撑,回填土时应两侧同时回填避免管道侧向变形,回填土前必须先做 通水试验。只要采用优良品质的管道,在实际生产过程中及时做好排查工作,排水管道 渗漏对下水产生影响是可以避免的。

(2) 化学品泄漏对土壤、地下水水质的影响

项目化学品采用密封包装,化学品储存场所、生产车间均已硬底化。在采取以上措施的情况下,本项目化学品运营过程不会对周边土壤、地下水水质产生不良的影响。

因此正常状况下,项目的运营生产不会对区内地下水水质产生影响,可不予考虑预测分析。

5.2.2.5 非正常工况地下水环境影响分析

非正常工况下包括建设项目生产运行阶段的开车、停车、检修等,属于可控工况,污染来源与正常工况相比无显著性差异。在该工况下各项防渗措施完好,一般情况下污

水不会渗漏和进入地下,因此不会对地下水造成污染。

5.2.2.6 事故工况下地下水环境定量预测分析

(1) 情景设置、预测因子选取和源强

1)情景设置

事故工况是指违反操作规程和有关规定或由于设备和管道的损坏,使正常生产秩序被破坏,造成环境污染的状态。事故工况属于不可控的、随机的工况;污染来源于事故排放,同时事故工况下防渗层破损。

2) 因子选取

危险废物暂存区没有设置储罐,且暂存量较少。本环评选取油性油漆稀释剂泄漏事故情形进行评价,考虑的主要污染物为 COD。

综合以上分析,根据项目特点和地下水质量标准,选取油性油漆稀释剂泄漏且防渗层破裂的情景,预测因子选择污染物 COD_{Mn}。

3) 预测用源强分析

油性油漆稀释剂 COD: 项目油性油漆稀释剂为 200kg 桶装,仓库、生产车间地面已作防渗处理。如遇仓库区域防渗层出现破损,导致油性油漆稀释剂渗透至地下水中,渗漏量按照 $m_M=A\times K\times T\times C$ (浓度)/100 (其中 m_M : 单位 g; A: 渗漏面积, m^2 ; K: 包气带垂向渗透系数,cm/s; T: 时间,s),渗漏面积按 $1m^2$ 。根据土壤监测结果,渗透率为 7.48mm/min,则渗透系数 K 为 0.01247cm/s。在污染事故发生 15 分钟内,污染物停止下渗,则泄漏持续时间按 900s 计算,油漆稀释剂的 COD_{Mn} 为 930000mg/L,即 COD_{Mn} 泄漏量为 $m_M=104.346kg$ 。

(2) 预测方法、模型和概化

A、方法

预测方法参照《环境影响评价技术导则 地下水环境》(HI610-2016),采用解析法进行事故工况地下水环境影响预测分析。

B、模型

预测模型方程如下:

$$C(x,t) = \frac{m/w}{2n_e\sqrt{\pi D_L t}} e^{-\frac{(x-ut)^2}{4D_L t}}$$

式中, x 为距注入点的距离, m;

t 为时间, d, 分别选取 100d、1000d 及 10 年进行预测;

C(x, t) 为 t 时刻 x 处的示踪剂浓度, g/L;

- m 为注入的示踪剂质量, kg;
- w 为横截面面积, m²;
- u 为地下水水流速度, m/d;
- ne 为有效孔隙度, 无量纲;
- DL为纵向弥散系数, m²/d;
- π为圆周率。

地下水流速采用达西定律计算,计算公式为:

$$V = \frac{KI}{n}$$

其中,V为地下水平均线速度,K为水平向渗透系数,I为水平向水力坡度,n为有效孔隙度。

C、模型应用水地质概化

考虑到区域地下水给水量稳定,可以认为地下水流场整体达到稳定。假设污染物泄漏后直接通过饱水包气带向下入渗。

对厂区地下水含水介质做如下概化和假设:

- ①厂区地下水含水层等厚无限,含水介质均质、各向同性,底部隔水层水平:
- ②地下水水流场为一维稳定流:
- ③事故发生后,废水注入不会对地下水流场产生影响。

D、模型应用水文地质条件概化

考虑到区域地下水给水量稳定,可以认为地下水流场整体达到稳定。假设废水泄漏 后直接通过饱水包气带向下入渗。

E、模型应用对厂区地下水含水介质做如下概化和假设:

- ①厂区地下水含水层等厚无限,含水介质均质、各向同性,底部隔水层水平;
- ②地下水水流场为一维稳定流;
- ③事故发生后,废水注入不会对地下水流场产生影响。

(3) 预测过程和结果

A、预测参数选取

根据本项目水文地质条件分析结果,含水层主要以粉砂为主,根据项目监测报告,项目所在地土壤渗透系数 K 为 0.01247cm/s。根据达西定律,区域场地水力坡度为 0.01,有效孔隙度 n 取经验值 0.3,地下水流速 u 为 0.359m/d。根据相关国内外经验系数,纵向弥散系数及横向弥散系数的取值可参照下表进行,由于地下水含水层岩性以中粗砂为主,故纵向弥散系数取值为 0.6。

含水层类型纵向弥散系数 (m²/d)细砂0.05~0.5中粗砂0.2~1

1~5

表5.2-1 弥散系数参考表

根据上述分析可知,各预测参数详见下表。

参数	$\mathbf{m}_{\mathbf{M}}$	W	u	ne	$\mathbf{D}_{\mathbf{L}}$
代表意义	长度为 M 的线源瞬时注入的示踪剂质量	横截面面积	水流速度	有效孔隙度	纵向弥散系数
单位	kg	m^2	m/d	无量纲	m ² /d
取值	104.346 (COD _{Mn})	1	0.359	0.3	0.6

表5.2-2 地下水预测需用参数取值汇总表

砂砾

B、预测结果

采用以上源强和参数,通过解析法模型计算,事故情况下,地下水瞬时注入污染物 影响预测结果见下表。

时间	100d	1000d	10年
x 距离 (m)	c 浓度(mg/L)	c 浓度(mg/L)	c 浓度(mg/L)
1	7.92E+01	2.57E-20	2.12E-82
5	2.37E+02	8.43E-20	7.00E-82
10	7.74E+02	3.65E-19	3.10E-81
20	4.42E+03	6.41E-18	5.97E-80
24	7.02E+03	1.97E-17	1.93E-79
28	9.77E+03	5.98E-17	6.25E-79
32	1.19E+04	1.79E-16	2.01E-78
34	1.25E+04	3.08E-16	3.61E-78
36	1.27E+04	5.29E-16	6.46E-78
40	1.18E+04	1.54E-15	2.06E-77
60	1.13E+03	2.66E-13	6.52E-75
80	3.83E+00	3.29E-11	1.88E-72
90	6.40E-02	3.22E-10	3.08E-71
100	4.65E-04	2.91E-09	4.94E-70
120	2.01E-09	1.85E-07	1.19E-67
140	3.11E-16	8.39E-06	2.60E-65
160	1.71E-24	2.73E-04	5.20E-63
180	3.37E-34	6.38E-03	9.49E-61

表5.2-3 非正常工况下瞬时注入地下水预测结果(COD_{Mn})

时间	100d	1000d	10年
200	2.36E-45	1.07E-01	1.58E-58
220	5.91E-58	1.28E+00	2.41E-56
240	5.27E-72	1.10E+01	3.34E-54
260	1.68E-87	6.75E+01	4.23E-52
280	1.91E-104	2.97E+02	4.89E-50
300	7.73E-123	9.39E+02	5.16E-48
320	1.12E-142	2.13E+03	4.97E-46
340	5.76E-164	3.45E+03	4.37E-44
360	1.06E-186	4.00E+03	3.51E-42
380	6.95E-211	3.33E+03	2.57E-40
400	1.63E-236	1.99E+03	1.72E-38
420	1.36E-263	8.50E+02	1.05E-36
440	4.05E-292	2.60E+02	5.84E-35
460	0	5.71E+01	2.97E-33
480	0	8.98E+00	1.38E-31
500	0	1.01E+00	5.83E-30
520	0	8.17E-02	2.25E-28
540	0	4.72E-03	7.95E-27
560	0	1.96E-04	2.56E-25
580	0	5.82E-06	7.53E-24
600	0	1.24E-07	2.02E-22
620	0	1.89E-09	4.94E-21
640	0	2.06E-11	1.10E-19
660	0	1.61E-13	2.25E-18
700	0	3.64E-18	7.12E-16
800	0	2.57E-32	2.56E-10
900	0	4.37E-50	9.41E-06
1000	0	1.78E-71	3.52E-02
1100	0	1.75E-96	1.34E+01
1200	0	4.13E-125	5.22E+02
1300	0	2.34E-157	2.07E+03
1400	0	3.19E-193	8.38E+02
1500	0	1.05E-232	3.45E+01
1600	0	8.24E-276	1.45E-01
1700	0	0	6.23E-05
1800	0	0	2.72E-09
1900	0	0	1.21E-14
2000	0	0	5.52E-21

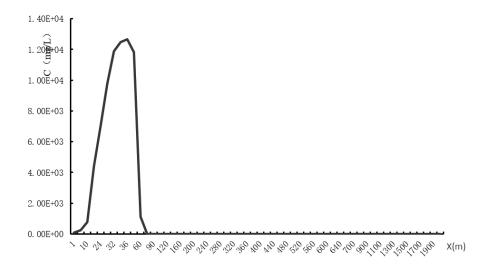


图 5.2-1 下游 COD_{Mn} 第 100 天预测值随距离变化趋势图

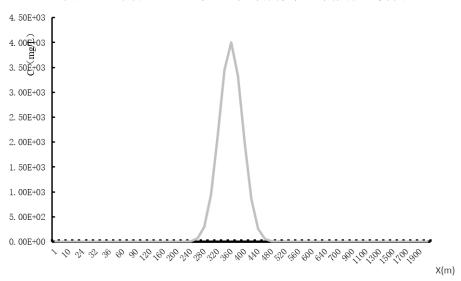


图 5.2-2 下游 COD_{Mn} 第 1000 天预测值随距离变化趋势图

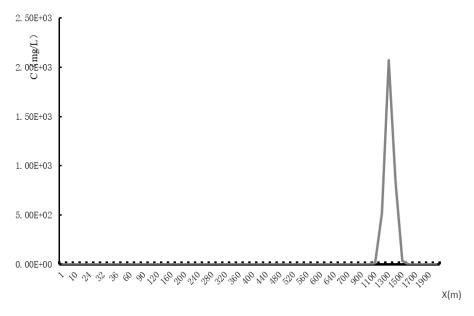


图 5.2-3 下游 COD_{Mn} 第 10 年预测值随距离变化趋势图 第 211 页

由预测结果可知,油性漆稀释剂发生渗漏时,瞬时注入 100d 时 COD_{Mn}下游预测最大浓度约 12666.48mg/L, 达标距离约为 36m; 1000d 时 COD_{Mn}下游预测最大浓度约 4003.99mg/L,达标距离约为 360m,10 年时 COD_{Mn}下游预测最大浓度约为 2071.17mg/L,达标距离约为 1300m。

5.2.2.7 泄漏未能及时修复连续注入的预测结果

在泄漏时未能够得到及时修复的情况下,本评价采点源连续注入的地下水一维模式,方程如下:

$$c = \frac{c_0}{2} \left\{ erfc \left(\frac{x - ut}{2\sqrt{D_L t}} \right) + \exp\left(\frac{ux}{D_L} \right) erfc \left(\frac{x + ut}{2\sqrt{D_L t}} \right) \right\}$$

项目在地下水主要流向(西北→东南)上与地表水(麦村大涌)距离约为1430m, 当发生持续泄漏时,在该处,随着时间的推移,COD_{Mn}等浓度将持续升高,泄入附近内 河涌后将对内河涌水质产生持续影响。

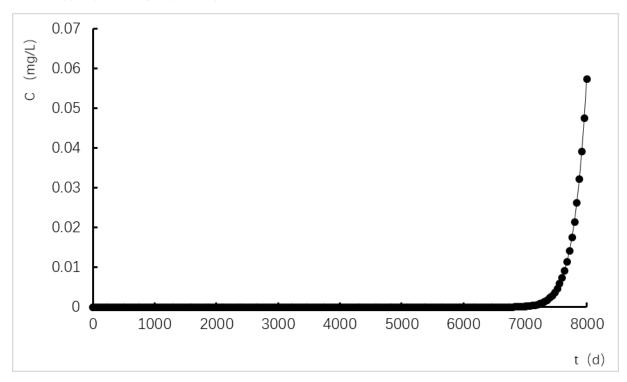


图 5.2-4 发生持续泄漏时地下水中 COD_{Mn}浓度随时间变化情况(地下水下游 1430m 处) 由上图可知,当泄漏时未能够得到及时修复的情况下,在 8000 日地下水下游 1430m 处各污染物浓度才会有显著上升。

项目应每年定期按监测计划对厂内地下水进行特征污染因子监测,如发现异常应及时检查修复。

5.2.2.8 地下水环境影响结论

项目场地地下水功能为保护区中的地质灾害易发区,敏感程度属不敏感。地下水污染途径主要包括污水管道、化学品仓等;项目选取了油性漆稀释剂泄漏情景进行事故状态下预测分析,根据预测结果,正常工况下,油性漆稀释剂渗漏产生 COD_{Mn} 对地下水有一定影响,非正常工况发生泄漏连续排放渗入地下时,也对区域地下水有一定影响;项目在建设过程中,将严格按照规范和要求对可能产生地下水影响的区域采取防渗工程措施,同时在厂区建设地下水水质观测井,加强地下水防渗措施检查和维护,可有效控制厂区内的泄漏污染物和废水污染物下渗,避免污染地下水。

综合分析,项目对区域地下水环境产生影响可接受。

5.3 运营期大气环境影响预测与评价

5.3.1 大气环境影响分析及环境现状监测浓度

根据估算模式预测计算,项目大气环境评价工作等级为一级评价,根据《环境影响评价技术导则大气环境》(HJ2.2-2018)的要求,一级评价项目应采用进一步预测模型开展大气环境影响预测与评价。

项目预测因子颗粒物(PM₁₀)、颗粒物(PM_{2.5})、二氧化硫(SO₂)、二氧化氮(NO₂)引用顺德区苏岗站环境空气质量监测数据。顺德区苏岗站位于佛山市顺德区大良街道,距离本项目所在地约 14.65km。顺德区苏岗站与本项目所在区域均为丘陵地形、南亚热带季风气候区,因此引用顺德区苏岗站的环境空气质量监测数据评价本项目所在区域基本污染物环境质量现状是可行。

项目其他预测因子TSP、非甲烷总烃、TVOC、二甲苯、NOx使用补充现状监测数据。

5.3.2 近 20 年常规气候统计资料

(1) 气象概况

为了解项目所在地的气象情况,从而更好地分析项目的废气对周围环境产生的影响,需先调查和分析项目所在地的气象资料。本评价选取 2023 年作为评价基准年,根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)规定,环境影响预测模型所需气象、地形、地表参数等基础数据应优先使用国家发布的标准化数据。因此本次预测评价的气象数据均为环境保护部环境工程评估中心国家环境保护部影响评价重点实验室发布的数据。

项目距离最近的气象站为顺德国家一般气象站,区站号: 59480。气象站位于佛山市顺德区,海拔高度 21.4m,中心地理坐标为东经 113.244 度,北纬 22.848 度。本次评价采用该气象站的观测资料进行分析。

气象站名 称	气象站 编号	气象站等 级	气象站 北纬	经纬度 东经	相对距 离/m	海拔高度 /m	数据年份	气象要素
顺德气象 站	59480	国家一般	22.8486°	113.2442°	10000	21.4	2023	温度、风速、 风向、降水、 日照

表5.3-1观测气象站数据信息

表5.3-2模拟气象数据信息

模拟。	点坐标/m	相对厂界距	数据年份	模拟气象要素	模拟方式		
X	Y	离 km	纵加干切	(大)外(《女亲	(大)(大) 		
17389	2904	14.65	2023	大气压、距地面高度、干球温度、 露点温度、风向偏北度数、风速	采用大气环境影响评价数 值模式 WRF 模拟生成		

(2) 气象资料组成

按《环境影响评价技术导则 大气环境》(HJ2.2-2018)一级评价的要求,气象资料由以下数据组成:

- ① 顺德区气象站近 20 年主要气象统计资料:
- ② 顺德区气象站 2023 年每日逐时地面气象观测资料;
- ③ 顺德区气象站 2023 年 MM5 模式模拟的高空格点资料。

(3) 近20年气象资料统计

顺德区气象站近 20 年(2004 年至 2023 年)常规气象资料统计见表 5.3-3。

	统计项目	统计值	极值出现时间	极值
	多年平均气温(℃)	23.7		
多	年平均最高气温(℃)	27.76	2017/08/22	39.2
多	年平均最低气温(℃)	20.93	2015/12/18	2.8
ã	多年平均气压(hPa)	1010.61		
多	5年平均水汽压(hPa)	22.26		
多	年平均相对湿度(%)	71.79		
多	年平均降雨量(mm)	1789.41	2023/09/08	270.6
	多年平均沙暴日数(d)	0.65		
灾害天气统	多年平均雷暴日数(d)	44.32		
计	多年平均冰雹日数(d)	0.45		
	多年平均大风日数(d)	1.76		
多年实测	J极大风速(m/s)、相应风向	19.89	2018/09/16	15.9 NE
	多年平均风速(m/s)	2.15		
多年三	主导风向、风向频率(%)	SE 9.5		
多年静风	风频率(风速<0.2m/s)(%)	2.7		

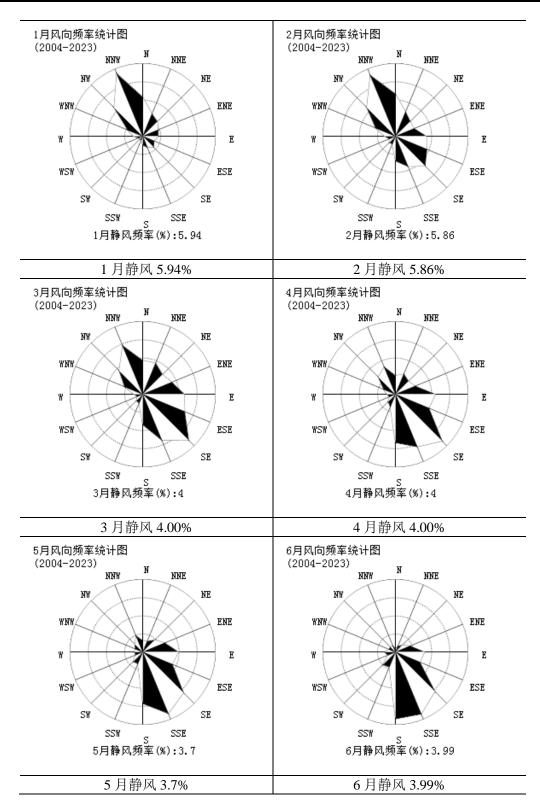
表5.3-3表 5.3-3 顺德气象站常规气象项目统计(2004-2023)

2、气象站风观测数据统计

1) 月平均风速

顺德气象站月平均风速见下表,7月平均风速最大(2.38 米/秒),2月平均风速最小(2 米/秒)。

月份 4 5 7 8 9 10 12 1 2 3 6 11 平均风速 2.11 2.01 2.12 2.21 2.33 2.38 2.21 2.21 2.21 2.17


表5.3-4顺德气象站月平均风速统计(单位 m/s)

2) 风向特征

近 20 年资料分析的月均风向玫瑰图见图 5.3-1,年均风向玫瑰图见图 5.3-2,顺德气象站以 SE 为主风向,占到全年 9.5%左右,顺德气象站年风向频率统计见表 5.3-5。

表5.3-5顺德气象站年风向频率统计(单位%)

风向	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	C
频率	8.75	6.55	5.95	5.9	7.45	6.5	9.5	9.2	8.25	2.85	2.55	2.05	2.8	3.25	6.5	9.15	2.7

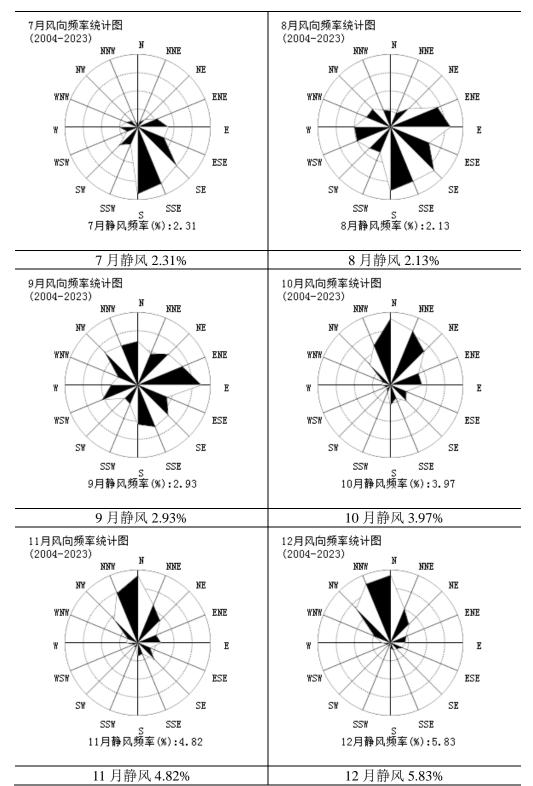


图5.3-1顺德各月风向频率统计图

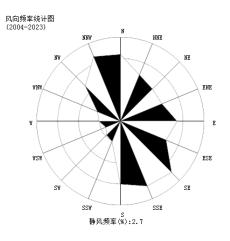


图5.3-2顺德风向玫瑰图

表5.3-6顺德气象站月风向频率统计(单位%)

风向月份	N	NN E	NE	EN E	Е	ESE	SE	SSE	S	SS W	sw	wsw	W	WNW	NW	NN W	С
01	12.3 1	7.62	6.51	5.28	4.86	3.83	4.79	3.79	2.8	1.22	1.23	1.37	2.9	5.09	12.72	21.32	5.94
02	9.51	5.94	4.69	4.55	6.94	7.64	9.43	7.33	5.55	1.88	1.96	1.49	2.45	4.83	9.15	14.82	5.86
03	6.65	6.63	5.49	6.2	8.2	8.93	12.79	9.75	5.99	1.88	1.76	1.13	1.71	3.85	6.57	10.34	4
04	4.26	5.01	4.2	4.88	9.14	8.29	15.11	12.98	11.08	3.12	2.38	1.46	1.96	2.92	5.57	6.75	4
05	2.95	2.94	4.4	6.11	9.11	8.18	14.74	17.07	13.2	3.25	3.45	1.96	2.12	2.07	2.81	4.46	3.7
06	0.91	1.68	2.83	4.47	8.24	7.48	15.82	19.06	18.98	4.61	5.04	2.32	3.14	1.96	2.04	1.83	3.99
07	0.81	1.34	2.86	5.46	8	7.45	14.33	16.09	17.62	4.78	6.57	2.95	4.79	3.17	2.12	1.31	2.31
08	2.66	2.46	4.28	8.49	10.0	6.93	10.22	9.79	10.6	4.53	4.94	6	6	4.32	4.21	3.03	2.13
09	7.16	5.52	7.11	7.91	10.4	5.15	7	7.39	6.44	3.3	3	6.2	4.33	3.4	7.51	7	2.93
10	15.9 8	14.0 4	11.4	7.25	7.56	4.06	5.26	3.38	4.79	1.77	1.09	1.01	2.11	1.89	6.9	10.33	3.97
11	17.8 5	10.8 5	8.32	5.26	6.14	3.51	6	3.13	3.54	1.25	1.23	1.08	3.04	2.75	8.83	14.3	4.82
12	19.3 1	10.3 9	7.41	4.74	4.2	3.53	2.4	2.04	1.47	0.8	0.84	1.04	2.33	4.9	13.84	18.17	5.83

表5.3-7顺德气象站每月静风比例

序号	静风	比例
1	1月静风 5.94%	2月静风 5.86%
2	3月静风 4.00%	4月静风 4.00%
3	5月静风 3.7%	6月静风 3.99%
4	7月静风 2.31%	8月静风 2.13%
5	9月静风 2.93%	10月静风 3.97%
6	11 月静风 4.82%	12 月静风 5.83%

3) 风速年际变化特征与周期分析

根据近 20 年资料分析,顺德气象站风速呈现下降趋势,2005 年年平均风速最大(2.50 米/秒),2019 年年平均风速最小(1.96 米/秒),无明显周期。

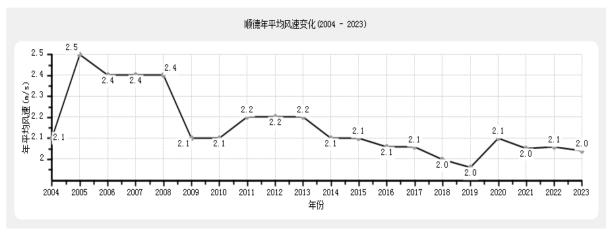


图5.3-3顺德(2004-2023)年平均风速(单位: m/s)

2、气象站温度分析

1) 月平均气温与极端气温

顺德气象站 7 月气温最高(29.98°C),1 月气温最低(15.18°C)。顺德月平均气温统计见下图。

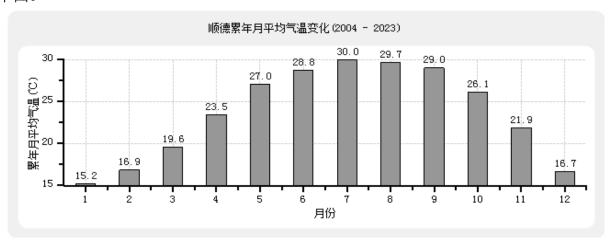


图5.3-4顺德月平均气温统计情况

2) 温度年际变化趋势与周期分析

顺德气象站 2021 年年平均气温最高(24.71℃),2008 年年平均气温最低(23.0℃),无明显周期。顺德年平均气温统计见下图。

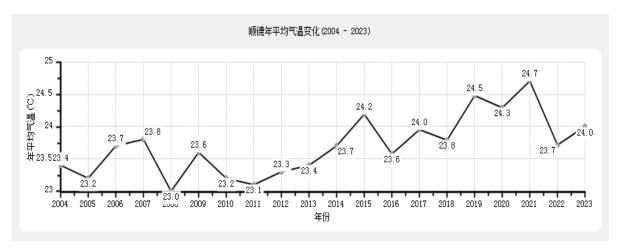


图5.3-5顺德(2004-2023)年平均气温(单位: ℃)

3、气象站降水分析

1) 月平均降水与极端降水

顺德气象站 6 月降水量最大(317.23 毫米), 12 月降水量最小(30.3 毫米)。

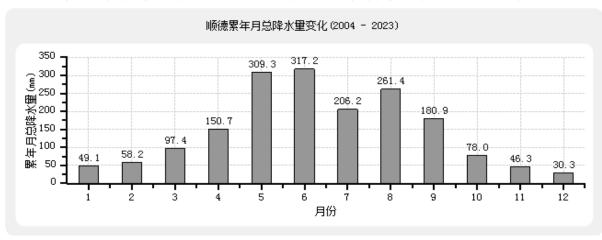


图5.3-6顺德月平均降水量(单位:毫米)

2) 降水年际变化趋势与周期分析

顺德气象站近 20 年年降水总量无明显变化趋势,2008 年年总降水量最大(2403.3 毫米), 2004 年年总降水量最小(1215.1 毫米),无明显周期。

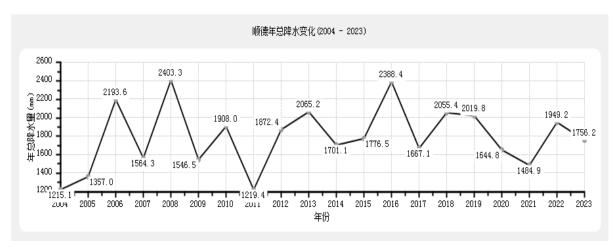


图5.3-7顺德(2004-2023)年总降水量(单位:毫米)

4、气象站日照分析

1) 月日照时数

顺德气象站 7 月日照最长(209.71 小时), 3 月日照最短(79.79 小时)。顺德月日照时数统计见图 5.3-8。

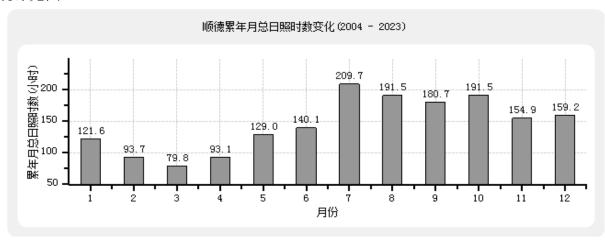


图5.3-8顺德月日照时数统计图(单位:小时)

2) 日照时数年际变化趋势与周期分析

顺德气象站近 20 年年日照时数无明显变化趋势,2004 年年日照时数最长(2128 小时), 2014 年年日照时数最短(1505.8 小时),无明显周期。顺德(2004-2023)年日照时长见下图。

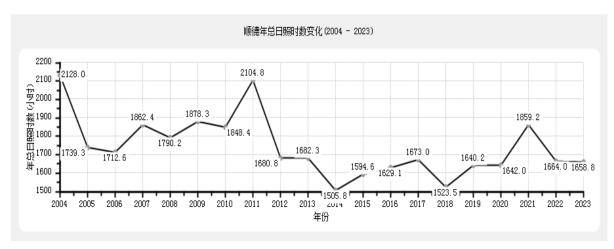


图5.3-9顺德(2004-2023)年日照时长(单位:小时)

5、气象站相对湿度分析

1) 月相对湿度分析

顺德气象站 06 月平均相对湿度最大(79.5%),12 月平均相对湿度最小(59.42%),顺德月平均相对湿度统计图见图 5.3-10。

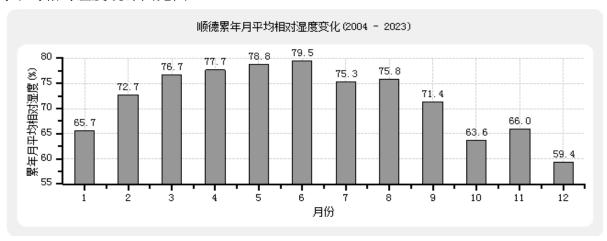


图5.3-10顺德月平均相对湿度统计结果(纵轴为百分比)

2) 相对湿度年际变化趋势与周期分析

顺德气象站近 20 年年平均相对湿度无明显变化趋势, 2016 年年平均相对湿度最大 (75.58%), 2011 年年平均相对湿度最小 (65.0%), 无明显周期。

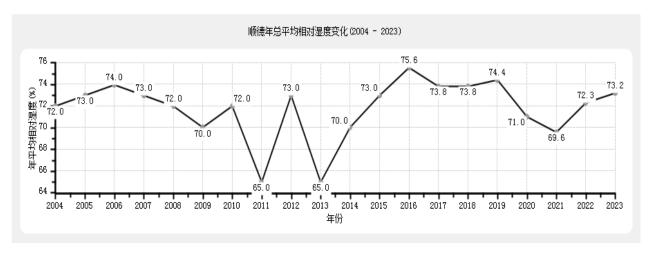


图5.3-11顺德(2004-2023)年平均相对湿度(纵轴为百分比)

5.3.3 顺德区逐时逐次气象资料

1、温度

项目所在区域每月平均温度变化情况见

2023 年平均温度月变化表 5.3-8 和图 5.3-12。项目所在地区属于亚热带海洋性季风气候,光照充足,常年温暖湿润。

月份 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 温度(℃) 15.41 18.90 20.99 23.27 26.76 29.00 30.35 29.68 28.42 25.41 22.62 17.28

表5.3-82023 年平均温度月变化

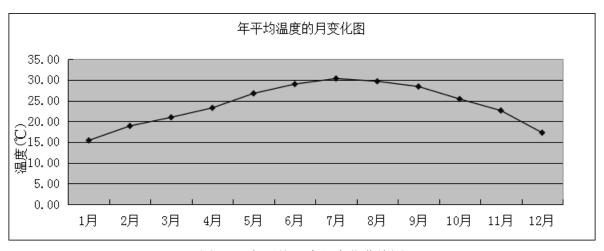


图5.3-12年平均温度月变化曲线图

2、风速

项目所在区域每月平均风速变化情况见表 5.3-9 和表 5.3-10;季小时平均风速的日变化情况见图 5.3-13 和图 5.3-14。

表5.3-9 2023 年平均风速的月变化

月份	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12 月
风速(m/s)	3.18	2.66	2.46	2.82	2.68	2.48	2.96	2.58	2.51	2.96	2.45	2.77

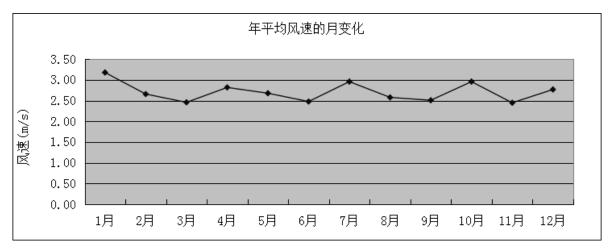


图5.3-13 年平均风速月变化曲线图

表5.3-10 2023 年季小时平均风速的日变化

小时(h) 风速(m/s)	1时	2 时	3时	4时	5时	6时	7时	8时	9时	10 时	11 时	12 时
春季	2.42	2.34	2.24	2.16	2.19	2.22	2.20	2.42	2.64	2.79	2.87	2.97
夏季	2.37	2.29	2.19	2.14	2.20	2.21	2.28	2.47	2.68	2.87	2.85	2.79
秋季	2.45	2.44	2.39	2.42	2.42	2.51	2.55	2.68	2.84	2.97	2.87	2.75
冬季	2.88	2.87	2.91	2.99	2.85	2.90	2.73	2.77	2.92	3.14	3.08	2.84
小时(h) 风速(m/s)	13 时	14 时	15 时	16 时	17 时	18 时	19 时	20 时	21 时	22 时	23 时	24 时
小时(h)	13 时 3.02	14 时 2.98	15 时	16 时	17 时	18 时	19 时	20 时	21 时 2.85	22 时 2.78	23 时 2.60	24 时 2.47
小时(h) 风速(m/s)	13 町	Ť	·		·		·	Ť	·	·	·	•
小时(h) 风速(m/s) 春季	3.02	2.98	2.93	2.85	2.88	2.92	2.92	2.88	2.85	2.78	2.60	2.47

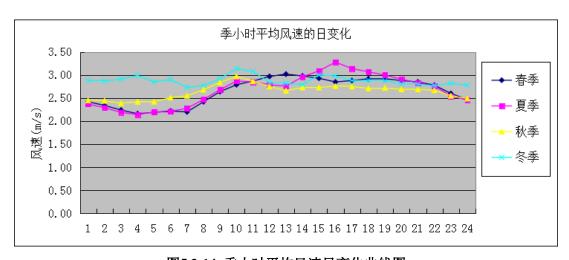


图5.3-14 季小时平均风速日变化曲线图

3、风向风频

2023年平均风频的月变化、季变化及年均风频见表 5.3-11,风向频率玫瑰图见图 5.3-15。

表5.3-112023 年平均风频的月变化、季变化及年均风频统计表

月份	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	静风
1月	32.12	29.84	8.74	3.49	1.75	1.08	4.17	4.30	3.09	1.88	0.67	0.40	0.81	0.94	1.21	5.24	0.27
2月	12.95	10.86	5.21	5.36	5.36	8.78	12.05	14.29	8.18	3.27	1.93	2.53	2.23	1.64	2.23	2.83	0.30
3 月	6.32	9.95	3.63	3.09	5.51	4.97	7.80	16.26	21.77	6.05	4.30	3.49	2.28	0.81	0.67	2.69	0.40
4月	8.75	6.94	4.58	4.03	5.28	4.86	15.14	19.03	16.94	4.58	2.22	1.94	0.83	1.25	2.08	1.25	0.28
5月	3.90	4.44	5.11	3.49	5.38	5.91	10.48	16.40	24.06	7.12	1.75	3.09	2.15	3.09	2.15	1.34	0.13
6月	0.83	2.08	4.58	7.92	8.75	6.25	11.39	13.06	23.47	7.22	4.31	3.47	3.19	1.53	1.11	0.69	0.14
7月	3.90	2.15	1.75	1.61	2.69	5.24	10.22	9.81	31.05	12.50	6.99	3.49	3.36	2.28	1.08	1.88	0.00
8月	4.17	3.76	1.61	2.15	3.49	2.69	8.33	10.89	25.27	13.04	12.90	4.44	4.44	0.67	0.81	1.34	0.00
9月	5.42	2.36	8.75	10.69	13.47	9.44	11.11	6.11	11.94	3.61	2.64	3.75	2.22	3.19	1.25	4.03	0.00
10 月	13.31	30.78	18.68	6.99	3.36	3.09	3.76	3.23	3.76	2.82	1.88	3.23	1.88	1.08	0.81	1.21	0.13
11月	15.97	21.53	9.44	5.69	6.25	5.42	8.75	7.50	6.25	2.50	1.94	2.36	1.11	0.83	1.67	2.78	0.00
12 月	25.81	20.43	2.42	2.28	3.09	4.57	5.38	4.30	5.65	2.15	3.76	4.97	2.02	2.69	4.30	6.05	0.13
春季	6.30	7.11	4.44	3.53	5.39	5.25	11.10	17.21	20.97	5.93	2.76	2.85	1.77	1.72	1.63	1.77	0.27
夏季	2.99	2.67	2.63	3.85	4.94	4.71	9.96	11.23	26.63	10.96	8.11	3.80	3.67	1.49	1.00	1.31	0.05
秋季	11.58	18.36	12.36	7.78	7.65	5.95	7.83	5.59	7.28	2.98	2.15	3.11	1.74	1.69	1.24	2.66	0.05
冬季	23.98	20.69	5.46	3.66	3.33	4.68	7.04	7.41	5.56	2.41	2.13	2.64	1.67	1.76	2.59	4.77	0.23
全年	11.14	12.15	6.21	4.70	5.33	5.15	9.00	10.39	15.18	5.59	3.80	3.11	2.21	1.67	1.61	2.61	0.15

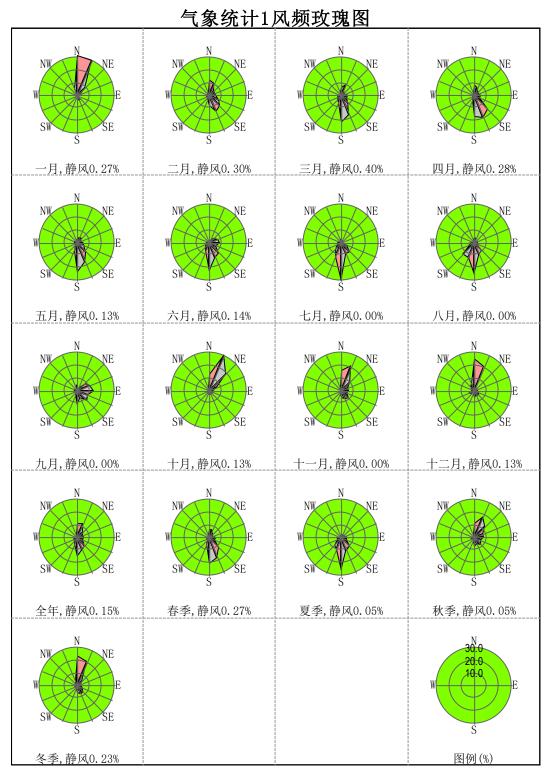


图5.3-15项目所在区域各季及全年风向频率图

4、高空气象资料

本次评价采用环境保护部环境工程评估中心提供的中尺度气象模拟数据。

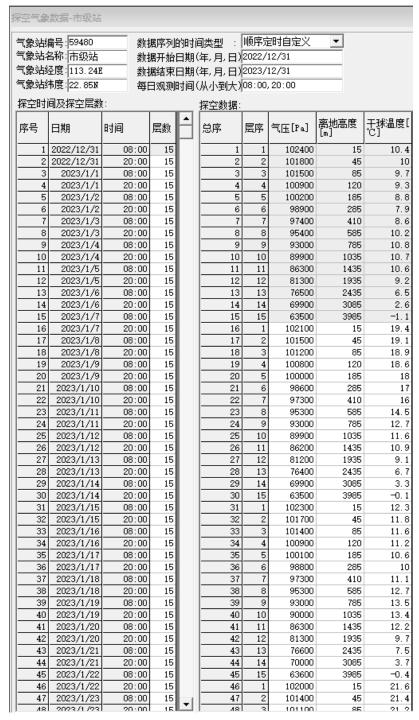


图5.3-16顺德区探空气象数据

5.3.4 预测因子

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)的规定: 预测因子根据评价因子而定, 选取有环境质量标准的评价因子作为预测因子: 当建设项目排放的 SO₂和

 NO_x 年排放量大于或等于 500t/a 时,评价因子应增加二次 $PM_{2.5}$ 。根据工程分析可知,项目 SO_2 和 NO_x 排放小于 500t/a;因此本次预测评价中可不需增加二次 $PM_{2.5}$ 的预测。

本次预测选取 TSP、PM₁₀、PM_{2.5}、TVOC、NMHC、二甲苯、SO₂、NOx、NO₂ 作为预测因子。

5.3.5 预测模式

根据估算模式,本项目的大气环境评价等级为一级,需进行进一步预测。

本项目评价选取 2023 年作为评价基准年,根据 2023 年气象观测数据及 20 年统计数据,分析如下:

- 1. 基准年内不存在风速<0.5m/s 的持续时间超过 72h:
- 2. 基准年内不存在近 20 年统计的全年静风(风速≤0.2m/s)频率超过 35%;
- 3. 项目所在区域周边 3km 范围内不存在大型水体(海或湖)。

因此,利用《环境影响评价技术导则大气》(HJ 2.2-2018)推荐的 AERMOD 模式系统进行预测。AERMOD 可模拟点源、面源、线源和体源等排放出的污染物在短期(小时平均、日)、长期(年平均)的浓度分布。模式可考虑建筑物下洗、湿沉降、重力沉降和干沉降以及化学反应等功能。AERMOD 有气象预处理程序,可以用地面的常规观测资料、地表状况以及太阳辐射等参数模拟基本气象参数的廓线值。具体计算采用EIAPro2018 软件,运行模式为一般模式(非缺省)。

5.3.6 预测范围及计算点

1、预测范围

根据预测结果,确定项目环境空气影响评价范围以项目厂址为中心区域,边长为5km 的矩形区域。

2、计算点

以本项目厂区中心处为坐标原点,使用两点距离法确定坐标系,各关注点位置坐标如下表所示。

序号	环境保护目标	X (m)	Y (m)	地面高程(m)
1	光华村	-327	536	2.99
2	潘祥实验学校	-483	-44	4.08
3	光华小学	-446	658	2.95
4	麦村	1078	-788	3.47
5	麦村小学	980	-628	5.18
6	罗水社区	1729	731	2.84

表5.3-12项目环境影响预测点位置情况

序号	环境保护目标	X (m)	Y (m)	地面高程(m)
7	杏坛社区	2427	-18	2.51
8	杏联中学	2406	183	2.97
9	龙潭村	2045	2157	3.11
10	西登村	1771	-2248	3.37
11	南华村	-1925	-1416	-0.43
12	南华小学	-2157	-1422	0.70
13	东村	-2312	1182	2.93
14	东村树人小学	-2235	981	0.88
15	杏坛中心区规划居住用地	2045	155	0.99

5.3.7 地形数据及气象地面特征参数

区域四个顶点的坐标(经度,纬度),单位:度:

西北角(112.841250,23.042083), 东北角(113.395417,23.042083)

西南角(112.841250,22.523750), 东南角(113.395417,22.523750)

东西向网格间距: 3(秒), 南北向网格间距:3(秒), 数据分辨率符合导则要求。

高程最小值: -45 (m), 高程最大值:528 (m), 地形数据范围覆盖评价范围。

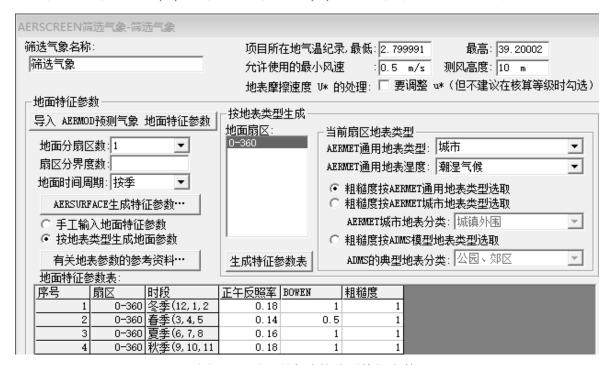


图5.3-17项目所在地的地面特征参数

预测气象地面特征产生见表 5.3-13 示。

表5.3-13预测气象地面特征参数表

序号	扇区	地表类型	时段	正午反照率	BOWEN	粗糙度
1	0~360		冬季(12,1,2月)	0.18	1	1
2	0~360	城市	春季(3,4,5月)	0.14	0.5	1
3	0~360	孙(11)	夏季(6,7,8月)	0.16	1	1
4	0~360		秋季(9,10,11月)	0.18	1	1

^{*}备注:项目位于南方、冬季的地面特征参数参考秋季。

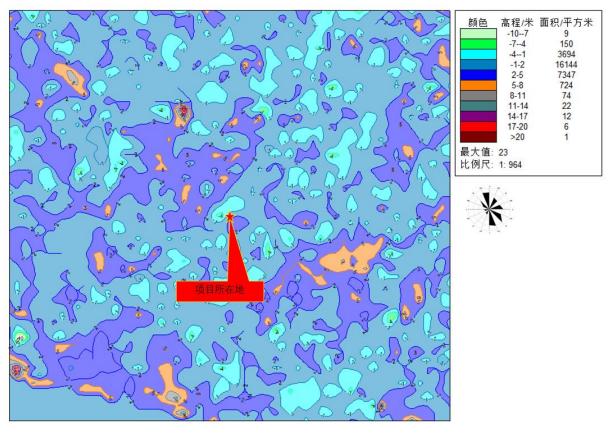


图5.3-18 项目评价范围地形图

5.3.8 大气预测相关参数

本项目大气预测相关参数选择见5.3-14。

参数 设置 设置 参数 作为平坦地形源处理的 考虑地形高程影响 0 地形高程 源数 不考虑 按高浮力烟羽HBP处理 预测点离地高 0 (预测点在地面上) 的点源个数 考虑城市效应 烟囱出口下洗 考虑 否 计算总沉积 不计算 考虑NO₂化学反应 否 计算干沉积 不计算 考虑全部源速度优化 是 计算湿沉积 不计算 考虑扩散过程的衰减 否 面源计算考虑干去除损耗 小风处理ALPHA选项 未采用 否 气象选项:气象起止日 2023-1-1至 使用AERMOD的ALPHA选项 否 2023-12-31 期 考虑建筑物下洗 否

表5.3-14大气预测相关参数选择

5.3.9 预测内容与评价

5.3.9.1 预测情景

根据佛山市生态环境局顺德分局发布的《佛山市生态环境局顺德分局关于发布

<2023 年度佛山市顺德区生态环境状况公报>的通知》(佛环顺函〔2024〕44 号),2023 年项目所在区域的 O₃ 超过《环境空气质量标准》(GB3095-2012)及其修改单二级标准,其余五项污染物指标浓度均能达到《环境空气质量标准》(GB3095-2012)及其修改单二级标准,故顺德区大气环境质量属不达标区。本项目不涉及排放超标污染物。

有组织排放的 PM_{10} 、 $PM_{2.5}$ 按照 TSP 的源强输入,无组织排放的 PM_{10} 、 $PM_{2.5}$ 按照 TSP 源强的 49%、10%输入,NMHC 和 TVOC 按照 <math>VOCs 的源强输入, NO_2 的源强按 ENO_2 的源强输入,本次预测的具体情景如下:

① 正常工况时:

- ——预测分析 TSP、PM₁₀、PM_{2.5} 在网格点(最大浓度落地点)及环境空气保护目标处日平均浓度及年平均浓度占标率;
- ——预测分析 TVOC 在网格点(最大浓度落地点)及环境空气保护目标处 8 小时平均浓度占标率:
- ——预测分析二甲苯、NMHC 在网格点(最大浓度落地点)及环境空气保护目标处1小时平均浓度占标率;
- ——预测分析 SO_2 、 NO_2 、 NO_x 在网格点(最大浓度落地点)及环境空气保护目标处 1 小时平均浓度、日平均浓度及年平均浓度占标率;

并根据上述短期浓度的占标率,分析本项目的大气环境防护距离的设置情况。

② 正常工况时:

- ——预测 TSP、 PM_{10} 、 $PM_{2.5}$ 在网格点(最大浓度落地点)及环境空气保护目标处的日平均和年平均浓度贡献值,综合考虑在建拟建源、区域削减源,并同步叠加现状监测值后,计算网格点(最大浓度落地点)及环境空气保护目标处的 TSP、 PM_{10} 、 $PM_{2.5}$ 的 95%保证率日平均质量浓度及年平均质量浓度的占标率;
- ——预测 TVOC 在网格点(最大浓度落地点)及环境空气保护目标处的最大 8 小时平均浓度贡献值,综合考虑在建拟建源、区域削减源,并同步叠加现状监测值后,计算 TVOC 8 小时平均浓度占标率;
- ——预测二甲苯、NMHC 在网格点(最大浓度落地点)及环境空气保护目标处的最大 1 小时平均浓度贡献值,综合考虑在建拟建源、区域削减源,并同步叠加现状监测值后,计算 NMHC1 小时平均浓度占标率;
- ——预测 NO_x 在网格点(最大浓度落地点)及环境空气保护目标处的最大 1h、日和年平均浓度贡献值,综合考虑在建拟建源、区域削减源,并同步叠加现状监测值后,

计算 NOx 的 1h、日平均质量浓度的占标率。

——预测 SO₂、NO₂在网格点(最大浓度落地点)及环境空气保护目标处的最大 1h、日和年平均浓度贡献值,综合考虑在建拟建源、区域削减源,并同步叠加现状监测值后,计算 SO₂、NO₂的 98%保证率日平均质量浓度和年平均质量浓度的占标率。

③非正常工况下:

- ——预测 NMHC、TSP、TVOC、二甲苯、非甲烷总烃、SO₂、NO_x 的最大 1 小时浓度,在网格点(最大浓度落地点)及环境空气保护目标处的最大浓度占标率。
 - ④计算大气环境防护距离,近距离网格间距取 50m。

基于上述预测情景,本次预测因子的具体内容如表 5.3-15 所示。

表5.3-15本次预测评价内容

序号	工况	污染源类型	预测因子	预测内容	评价内容	预测点									
1		新增污染源	TSP、PM ₁₀ 、 PM _{2.5} TVOC 二甲苯、NMHC	日平均浓度 年平均浓度 8小时平均浓度 小时平均浓度 小时平均浓度	最大浓度占标率										
			NOx SO ₂ , NO ₂	日平均浓度 小时平均浓度 日平均浓度 年平均浓度											
			TSP	95%保证率日平均 浓度	证率 95%日平均质重 浓度的占标率										
	正常			95%保证率日平均 浓度、年平均浓度	浓度和年平均质量浓 度的占标率	环境空气 保护目标									
		新增污染源	-	-	-	-	新增污染源 - 区域削减源	-	-	-	-	TVOC	8 小时平均浓度	叠加现状浓度后的 8 小时平均浓度的占标 率	及网格点 (最大落 地浓度点)
2		在建拟建源强 +	二甲苯、NMHC	1 小时平均浓度	叠加现状浓度后的 1 小时平均浓度的占标 率										
		+ 现状监测值	NOx	1 小时平均浓度、 98%保证率日平均 浓度	叠加环境质量现状浓度后的1小时平均浓度、叠加现状浓度后的98%保证率日平均质量浓度的占标率										
			SO ₂ 、NO ₂	98%保证率日平均 浓度、年平均浓度	叠加现状浓度后的保证率 98%日平均质量浓度和年平均质量浓度的占标率										
3	非正常	新增污染源	TSP TVOC	1 小时平均浓度	最大浓度占标率										

序号	工况	污染源类型	预测因子	预测内容	评价内容	预测点
			NMHC			
			二甲苯			
			SO_2			
			NO_x			
			TSP	日平均浓度		
	十/三打		PM ₁₀ , PM _{2.5}	日平均浓度		
4	大气环 境防护	所有污染源	TVOC	8 小时平均浓度	大气环境防护距离	
4	現例扩 距离	別有行案源	二甲苯、NMHC	1 小时平均浓度	人 《 小児別 1 厂	
	距內		CO NO NO	1 小时平均浓度		
			SO_2 , NO_2 , NO_x	日平均浓度		

5.3.9.2 预测源强

(1) 交通运输源

根据《环境影响评价技术导则大气环境》(HJ 2.2-2018),对于编制报告书的工业一级评价项目,需分析调查受本项目物料及产品运输影响新增的交通运输移动源,包括运输方式、新增交通流量、排放污染物及排放量。

根据建设单位提供的资料,物料及产品运输方式为陆运,主要运输至附近集散地,运输距离平均约 100km,受本项目原料、产品运输影响,周边道路平均新增大型货车 10000 次/年。

结合项目所在区域社会经济发展特点,并考虑国内机动车现状及发展趋势,运输车辆国V和国 6a 标准按 1:1 计算,机动车尾气排放系数详见表 3.6-31。

根据表 3.6-31,本项目交通运输移动源排放污染物主要为 CO、THC、NOx,排放量约 1.25t/a、0.16t/a、0.1315t/a。

(2) 本项目污染源及源强

根据工程分析,项目具体新增排放源在正常情况下各排放源污染物排放参数见表 5.3-16、表 5.3-17。非正常工况下各污染源的预测源强一览表见表 5.3-18。

(3) 已批在建、已批拟建污染源

根据对评价范围内与评价项目排放污染物有关的其他在建项目、已批复环境影响评价文件的拟建项目污染源的调查,具体调查结果如表 5.3-19~表 5.3-21 所示。

表5.3-16 项目点源废气源强一览表

类	点源		底部中 标/m	排气筒底部海拔高	排气	排气	烟气温	烟气排气量	烟气流速			污	染物排放过	東率(kg/l	n)		
型	名称	X	Y	度/m	度/m		度[℃]	(m ³ /h)	(m/s)	TSP	PM _{2.5}	PM ₁₀	TVOC/N MHC	二甲苯	SO ₂	NOx	NO ₂
	G1	91	-22	0	40	1.2	25	60000	14.74	0.0146	0.0146	0.0146	0.2614	0.0375	0.0063	0.0584	0.0584
	G2	12	-34	0	40	1.6	25	120000	16.58	0.0034	0.0034	0.0034					
	G3	23	-34	0	40	1.1	25	52000	15.20	2.6129	2.6129	2.6129					
	G4	43	-34	0	40	0.6	25	15000	14.74				0.0276				
	G5	79	-34	0	40	1.5	25	104000	16.35	0.8710	0.8710	0.8710					
	G6	90	-34	0	40	1.2	25	60000	14.74	0.0016	0.0016	0.0016					
点	G7	26	47	0	40	1.8	25	140000	15.28	0.0260	0.0260	0.0260	0.7479	0.1125	0.0063	0.0584	0.0584
源	G8	5	21	0	40	1.6	25	120000	16.58	0.0034	0.0034	0.0034					
	G9	19	21	0	40	1.5	25	104000	16.35	2.6129	2.6129	2.6129					
	G10	26	53	0	40	0.6	25	15000	14.74				0.0276				
	G11	77	21	0	40	1.5	25	104000	16.35	0.8710	0.8710	0.8710					
	G12	85	21	0	40	1.2	25	60000	14.74	0.0016	0.0016	0.0016					
	G13	82	-22	0	40	1	25	48000	16.98	0.0258	0.0258	0.0258	1.0925				
	G14	83	-7	0	40	0.25	25	3000	16.98				0.0090				

表5.3-17项目面源排放参数表

污染源名	面源中心	点坐标/m	面源海拔高	面源长	面源宽	与正北方	面源有效排			污染	杂物	
称	X	Y	度/m	度/m	度/m	向夹角/。	放高度/m	TSP	PM _{2.5}	PM_{10}	TVOC/NMHC	二甲苯
厂房二 1F	40	-18	0	109	36	-5	1.5	0.0571	0.0057	0.0280	0.0041	
厂房二 2F	40	-18	0	109	36	-5	11	0.0364	0.0036	0.0178		
厂房二 3F	40	-18	0	109	36	-5	16	0.1290	0.0129	0.0632		
厂房二 4F	40	-18	0	109	36	-5	22	1.2946	0.1295	0.6344	0.4447	0.0450
厂房二 5F	40	-18	0	109	36	-5	28				0.0420	
厂房三 1F	37	35	0	109	35	-5	1.5	0.0737	0.0074	0.0361	0.0041	
厂房三 2F	37	35	0	109	35	-5	11	0.0364	0.0036	0.0178		
厂房三 3F	37	35	0	109	35	-5	16	0.1290	0.0129	0.0632		
厂房三 4F	37	35	0	109	35	-5	20	1.0707	0.1071	0.5246	0.9105	0.1350
厂房三 5F	37	35	0	109	35	-5	28				0.0420	
厂房四 1F	-67	5	0	56	49	-5	1.5	0.0402	0.0040	0.0197		
厂房四 3F	-67	5	0	56	49	-5	16				0.0420	

备注: 参考《扬尘源颗粒物排放清单编制技术指南》(试行),"TSP、PM₁₀和 PM_{2.5} 参考粒径系数为: TSP 为 1、PM₁₀ 为 0.49、PM_{2.5} 为 0.1",面源 PM₁₀ 和 PM_{2.5} 无组织排放速率分别按 TSP 排放速率的 49%、10%计算。

表5.3-18非正常工况下各污染源的预测源强一览表(点源)

非正常排放 源	非正常排放原因	污染物	非正常排放速率/ (kg/h)	非正常排放浓度/ (mg/m³)	单次持续时 间/h	年发生频次/ 次	非正常排放量 (kg)
V/31		颗粒物	1.4273	23.79	1	1	1.4273
		VOCs	2.6140	43.57	1	1	2.6140
G1		二甲苯	0.3750	6.25	1	1	0.3750
		SO_2	0.0063	0.10	1	1	0.0063
		NO_x	0.0584	0.97	1	1	0.0584
G2		颗粒物	0.3382	2.82	1	1	0.3382
G3		颗粒物	17.4194	334.99	1	1	17.4194
G4		VOCs	0.0551	3.68	1	1	0.0551
G5		颗粒物	5.8065	55.83	1	1	5.8065
G6		颗粒物	0.1567	2.61	1	1	0.1567
	废气治理设施失	颗粒物	4.2641	30.46	1	1	4.2641
	及《石埕以旭大	VOCs	7.4788	53.42	1	1	7.4788
G7	Ж	二甲苯	1.1250	8.04	1	1	1.1250
		SO_2	0.0063	0.04	1	1	0.0063
		NO_x	0.0584	0.42	1	1	0.0584
G8		颗粒物	0.3382	2.82	1	1	0.3382
G9		颗粒物	17.4194	167.49	1	1	17.4194
G10		VOCs	0.0551	3.68	1	1	0.0551
G11		颗粒物	5.8065	55.83	1	1	5.8065
G12		颗粒物	0.1567	2.61	1	1	0.1567
C12		颗粒物	12.9133	269.03	1	1	12.9133
G13		VOCs	2.4278	50.58	1	1	2.4278
G14		VOCs	0.0180	6.00	1	1	0.0180

表5.3-19 区域已批在建源一览表

序号	项目名称	简称	涉及与本项目同种污染物
1	美涂士全球生态智能总部建设项目	美涂士	颗粒物、TVOC、NMHC
2	悍高智慧家居五金自动化制造基地新建项目	悍高家居	颗粒物、TVOC、NMHC
3	悍高集团股份有限公司功能拉篮车间搬迁扩建项目	悍高集团	颗粒物、TVOC、NMHC、SO ₂ 、NOx
4	佛山市顺德区保塑管业有限公司迁扩建项目	保塑管业	颗粒物、NMHC

表5.3-20 区域已批在建污染源点源一览表

点源	排气筒底部中	心坐标/m	排气筒底部	排气筒	排气筒	烟气温	烟气排气	烟气流				污染物技	#放速率	(kg/h)			
A.VA	X	Y	海拔高度/m	高度/m	内径/m	度[℃]	量 m³/h	速 m/s	SO ₂	NO ₂	TSP	PM ₁₀	PM _{2.5}	NOx	TVOC	二甲苯	NMHC
美涂士 G1	845	245	0	25	1.7	25	120000	14.69							5.099		5.099
美涂士 G2	892	249	0	25	2.2	25	200000	14.61			0.345	0.345	0.345		5.999		5.999
美涂士 G3	935	252	0	25	1.5	25	100000	15.72			0.138	0.138	0.138		2.399		2.399
美涂士 G4	978	254	0	25	1.2	25	65000	15.96			0.086	0.086	0.086		1.326		1.326
悍高家居 DA001	127	129	0	50	0.3	25	3780	14.85	-		0.005	0.005	0.005				
悍高家居 DA002	274	113	0	50	0.6	25	16065	15.78	-		0.023	0.023	0.023				
悍高家居 DA003	276	75	0	50	1.1	25	51408	15.03	-		0.095	0.095	0.095		0.192		0.192
悍高家居 DA004	134	-33	0	50	0.5	25	12096	17.11	-								0.248
悍高集团 DA001	269	154	0	50	1.5	25	72800	11.44			0.287	0.287	0.287				
悍高集团 DA002	270	134	0	50	0.65	25	17000	14.23	0.0084	0.076	0.0117	0.0117	0.0117	0.076	0.072		0.072
保塑管业 DA001	880	735	0	25	0.4	25	7000	15.47									0.285

表5.3-21 其他在建、拟建污染源多边形面源参数表

面源	面源各顶	点坐标/m	面源海拔	面源有效排				污染物	排放速率((kg/h)			
名称	X	Y	高度/m	放高度/m	SO_2	NO ₂	TSP	PM ₁₀	PM _{2.5}	NO _x	TVOC	二甲苯	NMHC
	674	495											
	703	77											
	1141	88]										
美涂士	1252	244	0	1.5			0.6220	0.3097	0.0632		8.332		8.332
天休工	905	465		15			0.6320	0.3097	0.0632		8.332		8.332
	768	455											
	766	502											
	674	495											

表5.3-22 其他矩形面源参数表

面源名称	面源中心点坐 标/m		面源海 拔高度	面源长 度/m	面源宽 度/m	与正北 方向夹	面源有 效排放	污染物排放速率(kg/h)								
	X	Y	/m	及/III	文/III	角/。	高度/m	SO_2	NO_2	TSP	PM ₁₀	PM _{2.5}	NO_x	TVOC	二甲苯	NMHC
悍高家居	225	83	0	161	330	0	25			0.129	0.0632	0.0129		0.103		0.351
悍高集团	235	146	0	57	135	-5	15	0.0003	0.003	1.5752	0.7718	0.1575		0.009		0.009
保塑管业	841	721	0	98	18	-5	20.5			0.006						0.568

备注:参考《扬尘源颗粒物排放清单编制技术指南》(试行),"TSP、PM₁₀和 PM_{2.5}参考粒径系数为: TSP 为 1、PM₁₀ 为 0.49、PM_{2.5} 为 0.1",在建、拟建污染源 PM₁₀ 和 PM_{2.5} 无组织排放速率分别按 TSP 排放速率的 49%、10%计算。

5.3.9.3 预测结果

(1) 正常工况下在环境保护目标及网格点处的预测结果统计

 $1)SO_2$

表5.3-23 SO₂ 贡献质量浓度预测结果表

预测点	平均时段	最大贡献值(μg/m³)	出现时间	占标率%	达标情况
	1 小时	0.0628	23070507	0.01	达标
光华村	日平均	0.0137	230625	0.01	达标
	年平均	0.0023	平均值	0.00	达标
	1 小时	0.0422	23082819	0.01	达标
潘祥实验学校	日平均	0.0092	230606	0.01	达标
	年平均	0.0010	平均值	0.00	达标
	1 小时	0.0413	23070507	0.01	达标
光华小学	日平均	0.0125	230625	0.01	达标
	年平均	0.0018	平均值	0.00	达标
	1 小时	0.0303	23090704	0.01	达标
麦村	日平均	0.0029	230415	0.00	达标
	年平均	0.0001	平均值	0.00	达标
	1 小时	0.0289	23090523	0.01	达标
麦村小学	日平均	0.0037	230906	0.00	达标
	年平均	0.0002	平均值	0.00	达标
	1 小时	0.0272	23081707	0.01	达标
罗水社区	日平均	0.0033	230818	0.00	达标
	年平均	0.0001	平均值	0.00	达标
	1 小时	0.0158	23041421	0.00	达标
杏坛社区	日平均	0.0015	230530	0.00	达标
	年平均	0.0001	平均值	0.00	达标
	1 小时	0.0201	23121123	0.00	达标
杏联中学	日平均	0.0014	230530	0.00	达标
	年平均	0.0001	平均值	0.00	达标

预测点	平均时段	最大贡献值(μg/m³)	出现时间	占标率%	达标情况
	1 小时	0.0175	23080804	0.00	达标
龙潭村	日平均	0.0023	230601	0.00	达标
	年平均	0.0002	平均值	0.00	达标
	1 小时	0.0238	23090703	0.00	达标
西登村	日平均	0.0022	230415	0.00	达标
	年平均	0.0001	平均值	0.00	达标
	1 小时	0.0144	23102323	0.00	达标
南华村	日平均	0.0029	230519	0.00	达标
	年平均	0.0002	平均值	0.00	达标
	1 小时	0.0135	23082505	0.00	达标
南华小学	日平均	0.0022	230519	0.00	达标
	年平均	0.0002	平均值	0.00	达标
	1 小时	0.0270	23042107	0.01	达标
东村	日平均	0.0028	230925	0.00	达标
	年平均	0.0002	平均值	0.00	达标
	1 小时	0.0225	23042107	0.00	达标
东村树人小学	日平均	0.0027	230925	0.00	达标
	年平均	0.0002	平均值	0.00	达标
* 다 바 기 전 센 에 딘 상 띠	1 小时	0.0205	23121123	0.00	达标
杏坛中心区规划居住用	日平均	0.0018	230530	0.00	达标
地	年平均	0.0001	平均值	0.00	达标
网格点(-100, 300)	1 小时	0.1393	23070507	0.03	达标
网格点(-50, -300)	日平均	0.0224	231010	0.01	达标
网格点 (0, 300)	年平均	0.0039	平均值	0.01	达标

表5.3-24 SO2叠加环境现状、已批在建拟建源及浓度

预测点	平均时段	浓度增量(μg/m³)	出现时间	现状浓度 (μg/m³)	叠加后浓度 (μg/m³)	占标率%	达标情况
V(4 × + +	98%保证率日平均	0.0079	231124	11.0000	11.0079	7.34	达标
光华村	年平均	0.0032	平均值	7.1260	7.1292	11.88	达标
逐光空水光	98%保证率日平均	0.0037	230309	11.0000	11.0037	7.34	达标
潘祥实验学校	年平均	0.0015	平均值	7.1260	7.1275	(μg/m³) 11.0079 7.34 7.1292 11.88 11.0037 7.34	达标
光华小学	98%保证率日平均	0.0062	230310	11.0000	11.0062	7.34	达标
二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二	98%保证率日平均 0.0079 年平均 0.0032 98%保证率日平均 0.0037 年平均 0.0037 年平均 0.0015 98%保证率日平均 0.0062 年平均 0.0026 98%保证率日平均 0.0003 年平均 0.0003 年平均 0.0003 年平均 0.0003 年平均 0.0003 98%保证率日平均 0.0003 年平均 0.0001 年平均 0.0001 年平均 0.0001 年平均 0.0001 年平均 0.0001 98%保证率日平均 0.0001 98%保证率日平均 0.0001 98%保证率日平均 0.0001 98%保证率日平均 0.0003 年平均 0.0001 98%保证率日平均 0.0003 年平均 0.0003 年平均 0.0003	0.0026	平均值	7.1260	7.1286	11.88	达标
主 + + +	98%保证率日平均	0.0005	231207	11.0000	11.0005	7.33	达标
麦村	年平均	0.0003	平均值	7.1260	7.1263	11.88	达标
麦村小学	98%保证率日平均	0.0007	231207	11.0000	11.0007	7.33	达标
	年平均	0.0003	平均值	7.1260	7.1263	11.88	达标
田小打豆	98%保证率日平均	0.0014	231213	11.0000	11.0014	7.33	达标
罗水社区	年平均	0.0003	平均值	7.1260	7.1263	11.88	达标
杏坛社区	98%保证率日平均	0.0001	230304	11.0000	11.0001	7.33	达标
省坛任区	年平均	0.0001	平均值	7.1260	7.1261	11.88	达标
杏联中学	98%保证率日平均	0.0002	230304	11.0000	11.0002	7.33	达标
省联甲子	年平均	0.0001	平均值	7.1260	(μg/m³)	11.88	达标
龙潭村	98%保证率日平均	0.0006	230304	11.0000	11.0006	7.33	达标
儿 得们	年平均	0.0003	0.0037 230309 11.0000 11.0037 0.0015 平均值 7.1260 7.1275 0.0062 230310 11.0000 11.0062 0.0026 平均值 7.1260 7.1286 0.0005 231207 11.0000 11.0005 0.0003 平均值 7.1260 7.1263 0.0007 231207 11.0000 11.0007 0.0003 平均值 7.1260 7.1263 0.0014 231213 11.0000 11.0014 0.0003 平均值 7.1260 7.1263 0.0001 230304 11.0000 11.0001 0.0001 平均值 7.1260 7.1261 0.0002 230304 11.0000 11.0002 0.0001 平均值 7.1260 7.1261 0.0003 平均值 7.1260 7.1263 0.0003 平均值 7.1260 7.1263 0.0003 231207 11.0000 11.0003 0.0001 平均值 7.1260 7.1262<	11.88	达标		
西登村	98%保证率日平均	0.0003	231207	11.0000	11.0003	7.33	达标
四豆们	年平均	0.0001	平均值	7.1260	7.1262	11.88	达标
南华村	98%保证率日平均	0.0008	230302	11.0000	11.0008	7.33	达标
第 一个们	年平均	0.0004	平均值	7.1260	7.1264	11.88	达标
南华小学	98%保证率日平均	0.0008	230309	11.0000	11.0008	7.33	达标
用于小子	, , ,	0.0003	平均值	7.1260	7.1263	11.88	达标
东村	98%保证率日平均	0.0007	231203	11.0000	11.0007	7.33	达标
本们	年平均	0.0004	平均值	7.1260	7.1264	11.88	达标
东村树人小学	98%保证率日平均	0.0006	231203	11.0000	11.0006	7.33	达标
本門例八小子 	年平均	0.0004	平均值	7.1260	7.1264	11.88	达标

预测点	平均时段	浓度增量(μg/m³)	出现时间	现状浓度 (μg/m³)	叠加后浓度 (μg/m³)	占标率%	达标情况
杏坛中心区规划居住用	98%保证率日平均	0.0002	231213	11.0000	11.0002	7.33	达标
地	年平均	0.0001	平均值	7.1260	7.1262	11.88	达标
网格点(-100,150)	98%保证率日平均	0.0122	231213	11.0000	11.0122	7.34	达标
网格点(100,300)	年平均	0.0063	平均值	7.1260	7.1323	11.89	达标

2)NO₂

表5.3-25 NO2贡献质量浓度预测结果表

预测点	平均时段	最大贡献值(μg/m³)	出现时间	占标率%	达标情况
	1 小时	56.4942	23070507	6.28	达标
光华村	日平均	15.0551	230319	5.02	达标
	年平均	3.1457	平均值	1.57	达标
	1 小时	63.2909	23092804	7.03	达标
潘祥实验学校	日平均	12.7075	230908	4.24	达标
	年平均	1.6042	平均值	0.80	达标
	1 小时	58.7729	23022208	6.53	达标
光华小学	日平均	12.2441	230526	4.08	达标
	年平均	2.4351	平均值	1.22	达标
	1 小时	51.4279	23020624	5.71	达标
麦村	日平均	7.0993	231208	2.37	达标
	年平均	0.2806	平均值	0.14	达标
	1 小时	54.496	23041424	6.06	达标
麦村小学	日平均	7.6435	231208	2.55	达标
	年平均	0.3164	平均值	0.16	达标
	1 小时	41.2892	23112024	4.59	达标
罗水社区	日平均	4.2512	230514	1.42	达标
	年平均	0.2673	平均值	0.13	达标
	1 小时	31.458	23051406	3.50	达标
杏坛社区	日平均	2.6123	231004	0.87	达标
	年平均	0.1203	平均值	0.06	达标
	1 小时	33.682	23062906	3.74	达标
杏联中学	日平均	3.2085	231003	1.07	达标
	年平均	0.1424	平均值	0.07	达标
	1 小时	28.4672	23082601	3.16	达标
龙潭村	日平均	1.9246	230725	0.64	达标
	年平均	0.212	平均值	0.11	达标
西登村	1 小时	27.4599	23021801	3.05	达标

预测点	平均时段	最大贡献值(μg/m³)	出现时间	占标率%	达标情况
	日平均	2.4586	230415	0.82	达标
	年平均	0.1171	平均值	0.06	达标
	1 小时	32.1751	23091202	3.58	达标
南华村	日平均	3.4436	230914	1.15	达标
	年平均	0.33	平均值	0.17	达标
	1 小时	31.0058	23091306	3.45	达标
南华小学	日平均	2.7089	231214	0.90	达标
	年平均	0.2805	平均值	0.14	达标
	1 小时	31.2514	23091907	3.47	达标
东村	日平均	4.9456	231109	1.65	达标
	年平均	0.378	平均值	0.19	达标
	1 小时	32.3913	23071906	3.60	达标
东村树人小学	日平均	3.9636	231109	1.32	达标
	年平均	0.3899	平均值	0.19	达标
杏坛中心区规划居住用	1 小时	38.6448	23062906	4.29	达标
日本中心区然划后任用 「 地	日平均	3.5794	231003	1.19	达标
년 	年平均	0.1789	平均值	0.09	达标
网格点(150,50)	1 小时	241.1632	23102603	26.80	达标
网格点(50,100)	日平均	51.6016	230826	17.20	达标
网格点(0,100)	年平均	14.9531	平均值	7.48	达标

表5.3-26 NO2叠加环境现状浓度、已批在建源的预测结果表

预测点	平均时段	浓度增量(μg/m³)	出现时间	现状浓度(mg/m ³)	叠加后浓度(mg/m³)	占标率%	达标情况
光华村	98%保证率日平均	0.0274	230218	61	61.0274	76.28	达标
几千竹	年平均	0.0295	平均值	26.3753	26.4048	66.01	达标
潘祥实验学校	98%保证率日平均	0.0258	230218	61	61.0258	76.28	达标
イング	年平均	0.0134	平均值	26.3753	26.3888	65.97	达标
光华小学	98%保证率日平均	0.02	230218	61	61.02	76.28	达标
ルギグチ	年平均	0.0239	平均值	26.3753	26.3992	66.00	达标
麦村	98%保证率日平均	0.0027	230218	61	61.0027	76.25	达标
友们	年平均	0.0024	平均值	26.3753	26.3778	65.94	达标
丰村小兴	98%保证率日平均	0.0022	230218	61	61.0022	76.25	达标
麦村小学	年平均	0.0027	平均值	26.3753	26.3781	65.95	达标
四小社区	98%保证率日平均	0.0004	230218	61	61.0004	76.25	达标
罗水社区	年平均	0.0025	平均值	26.3753	26.3778	65.94	达标
*도기(호	98%保证率日平均	0	230218	61	61	76.25	达标
杏坛社区	年平均	0.001	平均值	26.3753	26.3763	65.94	达标
杏联中学	98%保证率日平均	0	230218	61	61	76.25	达标
告	年平均	0.0011	平均值	26.3753	26.3764	65.94	达标
龙潭村	98%保证率日平均	0	230218	61	61	76.25	达标
儿4年们	年平均	0.0024	平均值	26.3753	26.3778	65.94	达标
亚 攻 扫	98%保证率日平均	0.0023	230218	61	61.0023	76.25	达标
西登村	年平均	0.0013	平均值	26.3753	26.3767	65.94	达标
±1/2.1-1	98%保证率日平均	0.0039	230218	61	61.0039	76.25	达标
南华村	年平均	0.0033	平均值	26.3753	26.3786	65.95	达标
古化小兴	98%保证率日平均	0.0034	230218	61	61.0034	76.25	达标
南华小学	年平均	0.0028	平均值	26.3753	26.3782	65.95	达标
* ++	98%保证率日平均	0.0016	230218	61	61.0016	76.25	达标
东村	年平均	0.0034	平均值	26.3753	26.3787	65.95	达标
*************************************	98%保证率日平均	0.0018	230218	61	61.0018	76.25	达标
东村树人小学	年平均	0.0033	平均值	26.3753	26.3786	65.95	达标
杏坛中心区规	98%保证率日平均	0	230218	61	61	76.25	达标

预测点	平均时段	浓度增量(μg/m³)	出现时间	现状浓度(mg/m³)	叠加后浓度(mg/m³)	占标率%	达标情况
划居住用地	年平均	0.0013	平均值	26.3753	26.3767	65.94	达标
网格点 (-150,150)	98%保证率日平均	0.0812	230218	61	61.0812	76.35	达标
网格点 (100,300)	年平均	0.0585	平均值	26.3753	26.4339	66.08	达标

3)NOx

表5.3-27 NOx 贡献值浓度预测结果表

预测点	平均时段	最大贡献值(μg/m³)	出现时间	占标率%	达标情况
	1 小时	0.5821	23070507	0.23	达标
光华村	日平均	0.1274	230625	0.13	达标
	年平均	0.0209	平均值	0.04	达标
	1 小时	0.3912	23082819	0.16	达标
潘祥实验学校	日平均	0.0854	230606	0.09	达标
	年平均	0.0089	平均值	0.02	达标
	1 小时	0.3829	23070507	0.15	达标
光华小学	日平均	0.1154	230625	0.12	达标
	年平均	0.0168	平均值	0.03	达标
	1 小时	0.2811	23090704	0.11	达标
麦村	日平均	0.0270	230415	0.03	达标
	年平均	0.0012	平均值	0.00	达标
	1 小时	0.2679	23090523	0.11	达标
麦村小学	日平均	0.0345	230906	0.03	达标
	年平均	0.0014	平均值	0.00	达标
	1 小时	0.2520	23081707	0.10	达标
罗水社区	日平均	0.0304	230818	0.03	达标
	年平均	0.0013	平均值	0.00	达标
	1 小时	0.1464	23041421	0.06	达标
杏坛社区	日平均	0.0138	230530	0.01	达标
	年平均	0.0006	平均值	0.00	达标
	1 小时	0.1863	23121123	0.07	达标
杏联中学	日平均	0.0132	230530	0.01	达标
	年平均	0.0006	平均值	0.00	达标
	1 小时	0.1620	23080804	0.06	达标
龙潭村	日平均	0.0209	230601	0.02	达标
	年平均	0.0014	平均值	0.00	达标
西登村	1 小时	0.2205	23090703	0.09	达标

预测点	平均时段	最大贡献值(μg/m³)	出现时间	占标率%	达标情况
	日平均	0.0200	230415	0.02	达标
	年平均	0.0008	平均值	0.00	达标
	1 小时	0.1333	23102323	0.05	达标
南华村	日平均	0.0267	230519	0.03	达标
	年平均	0.0020	平均值	0.00	达标
	1 小时	0.1254	23082505	0.05	达标
南华小学	日平均	0.0202	230519	0.02	达标
	年平均	0.0018	平均值	0.00	达标
	1 小时	0.2498	23042107	0.10	达标
东村	日平均	0.0264	230925	0.03	达标
	年平均	0.0022	平均值	0.00	达标
	1 小时	0.2088	23042107	0.08	达标
东村树人小学	日平均	0.0251	230925	0.03	达标
	年平均	0.0021	平均值	0.00	达标
杏坛中心区规划居住用	1 小时	0.1898	23121123	0.08	达标
古以中心区別別店住用 地	日平均	0.0165	230530	0.02	达标
ነቡ	年平均	0.0007	平均值	0.00	达标
网格点(-100, -300)	1 小时	1.2911	23070507	0.52	达标
网格点(-50, -300)	日平均	0.2073	231010	0.21	达标
网格点(0,300)	年平均	0.0359	平均值	0.07	达标

表5.3-28 NOx 叠加现状浓度、已批在建源的预测结果表

预测点	平均时段	浓度增量(μg/m³)	出现时间	现状浓度(μg/m³)	叠加后浓度(μg/m³)	占标率%	达标情况
光华村	1 小时	0.6068	23070507	59	59.6068	23.84	达标
九十年	98%保证率日平均	0.1551	230625	51	51.1551	51.16	达标
潘祥实验学校	1 小时	0.4459	23102720	59	59.4459	23.78	达标
抽件久極子仅	98%保证率目平均	0.1156	230607	51	51.1156	51.12	达标
光华小学	1 小时	0.4103	23070507	59	59.4103	23.76	达标
\rightarrow 1 \ \rightarrow 1	98%保证率日平均	0.1414	230625	51	51.1414	51.14	达标
麦村	1 小时	0.2949	23090704	59	59.2949	23.72	达标
交/11	98%保证率日平均	0.0368	230415	51	51.0368	51.04	达标
麦村小学	1 小时	0.2885	23020618	59	59.2885	23.72	达标
文 们71子	98%保证率日平均	0.0460	230906	51	51.0460	51.05	达标
罗水社区	1 小时	0.2756	23071506	59	59.2756	23.71	达标
少八年四	98%保证率日平均	0.0414	230818	51	51.0414	51.04	达标
杏坛社区	1 小时	0.2184	23072307	59	59.2184	23.69	达标
日本任匹	98%保证率日平均	0.0218	230530	51	51.0218	51.02	达标
杏联中学	1 小时	0.2448	23121123	59	59.2448	23.70	达标
14X 1 1	98%保证率日平均	0.0216	230530	51	51.0216	51.02	达标
龙潭村	1 小时	0.1776	23112902	59	59.1776	23.67	达标
701年/1	98%保证率日平均	0.0353	230601	51	51.0353	51.04	达标
西登村	1 小时	0.2929	23090703	59	59.2929	23.72	达标
□ □ □ 11	98%保证率日平均	0.0261	231226	51	51.0261	51.03	达标
南华村	1 小时	0.2105	23020208	59	59.2105	23.68	达标
田十1	98%保证率日平均	0.0391	230519	51	51.0391	51.04	达标
南华小学	1 小时	0.2016	23020208	59	59.2016	23.68	达标
出十八十	98%保证率日平均	0.0299	230519	51	51.0299	51.03	达标
东村	1 小时	0.3064	23042107	59	59.3064	23.72	达标
21/11	98%保证率日平均	0.0369	230925	51	51.0369	51.04	达标
东村树人小学	1 小时	0.2951	23082423	59	59.2951	23.72	达标
	98%保证率日平均	0.0360	230925	51	51.0360	51.04	达标
杏坛中心区规	1 小时	0.2538	23063006	59	59.2538	23.70	达标

预测点	平均时段	浓度增量(μg/m³)	出现时间	现状浓度(μg/m³)	叠加后浓度(μg/m³)	占标率%	达标情况
划居住用地	98%保证率日平均	0.0267	230530	51	51.0267	51.03	达标
网格点 (-200,-200)	1 小时	1.5807	23070207	59	60.5807	24.23	达标
网格点 (-200,-250)	98%保证率日平均	0.2735	231017	51	51.2735	51.27	达标

注:项目无NOx年平均背景值,仅对NOx小时平均和日平均进行叠加预测

4)TSP

表5.3-29 TSP 贡献值浓度预测结果表

预测点	平均时段	最大贡献值(μg/m³)	出现时间	占标率%	达标情况
光华村	日平均	15.0551	230319	5.02	达标
几千们	年平均	3.1457	平均值	1.57	达标
潘祥实验学校	日平均	12.7075	230908	4.24	达标
御件	年平均	1.6042	平均值	0.80	达标
光华小学	日平均	12.2441	230526	4.08	达标
几年小子	年平均	2.4351	平均值	1.22	达标
麦村	日平均	7.0993	231208	2.37	达标
友们	年平均	0.2806	平均值	0.14	达标
麦村小学	日平均	7.6435	231208	2.55	达标
友 们小子	年平均	0.3164	平均值	0.16	达标
田小井区	日平均	4.2512	230514	1.42	达标
罗水社区	年平均	0.2673	平均值	0.13	达标
杏坛社区	日平均	2.6123	231004	0.87	达标
省坛杠区	年平均	0.1203	平均值	0.06	达标
杏联中学	日平均	3.2085	231003	1.07	达标
省联中子	年平均	0.1424	平均值	0.07	达标
-15:200 1-1-1	日平均	1.9246	230725	0.64	达标
龙潭村	年平均	0.2120	平均值	0.11	达标
正交 县	日平均	2.4586	230415	0.82	达标
西登村	年平均	0.1171	平均值	0.06	达标
古化社	日平均	3.4436	230914	1.15	达标
南华村	年平均	0.3300	平均值	0.17	达标

预测点	平均时段	最大贡献值(μg/m³)	出现时间	占标率%	达标情况
南华小学	日平均	2.7089	231214	0.90	达标
用十小子	年平均	0.2805	平均值	0.14	达标
东村	日平均	4.9456	231109	1.65	达标
25/TJ	年平均	0.3780	平均值	0.19	达标
东村树人小学	日平均	3.9636	231109	1.32	达标
水竹柳八竹子	年平均	0.3899	平均值	0.19	达标
杏坛中心区规划居住用	日平均	3.5794	231003	1.19	达标
地	年平均	0.1789	平均值	0.09	达标
网格点(0,50)	日平均	94.4482	231104	31.48	达标
网格点(50,50)	年平均	31.5024	平均值	15.75	达标

表5.3-30 TSP 叠加环境现状浓度、已批在建源的预测结果表

预测点	平均时段	浓度增量(μg/m³)	出现时间	现状浓度(μg/m³)	叠加后浓度(μg/m ³)	占标率%	达标情况
光华村	95%保证率日平均	13.2268	230320	219	232.2268	77.41	达标
潘祥实验学校	95%保证率日平均	10.0347	230910	219	229.0347	76.34	达标
光华小学	95%保证率日平均	10.4087	230720	219	229.4087	76.47	达标
麦村	95%保证率日平均	2.7568	230929	219	221.7568	73.92	达标
麦村小学	95%保证率日平均	3.2236	231121	219	222.2236	74.07	达标
罗水社区	95%保证率日平均	3.2911	230224	219	222.2911	74.10	达标
杏坛社区	95%保证率日平均	1.6570	230716	219	220.6570	73.55	达标
杏联中学	95%保证率日平均	1.6896	230309	219	220.6896	73.56	达标
龙潭村	95%保证率日平均	2.1301	230809	219	221.1301	73.71	达标
西登村	95%保证率日平均	1.2698	230325	219	220.2697	73.42	达标
南华村	95%保证率日平均	2.4908	231023	219	221.4908	73.83	达标
南华小学	95%保证率日平均	2.3855	230614	219	221.3855	73.80	达标
东村	95%保证率日平均	2.5272	230826	219	221.5272	73.84	达标
东村树人小学	95%保证率日平均	2.6282	231108	219	221.6282	73.88	达标
杏坛中心区规划居 住用地	95%保证率日平均	2.3220	230211	219	221.3220	73.77	达标
网格点(250,250)	95%保证率日平均	38.6770	230806	219	257.6770	85.89	达标

注:项目无TSP年平均背景值,仅对TSP日平均进行叠加预测

5)PM₁₀

表5.3-31 PM₁₀ 贡献质量浓度预测结果表

预测点	平均时段	最大贡献值(μg/m³)	出现时间	占标率%	达标情况
光华村	日平均	10.7546	230526	7.17	达标
九千47	年平均	2.1995	平均值	3.14	达标
潘祥实验学校	日平均	8.9440	230908	5.96	达标
御件	年平均	1.0772	平均值	1.54	达标
光华小学	日平均	9.3686	230526	6.25	达标
几千小子	年平均	1.7203	平均值	2.46	达标
麦村	日平均	3.4906	231208	2.33	达标
夕们	年平均	0.1744	平均值	0.25	达标
麦村小学	日平均	3.7480	231208	2.50	达标
友们小子	年平均	0.1956	平均值	0.28	达标
田小井区	日平均	2.8945	230818	1.93	达标
罗水社区	年平均	0.1715	平均值	0.25	达标
杏坛社区	日平均	1.5856	231004	1.06	达标
省场任色	年平均	0.0766	平均值	0.11	达标
杏联中学	日平均	1.8605	231003	1.24	达标
省联中子	年平均	0.0893	平均值	0.13	达标
长海县	日平均	1.5067	230601	1.00	达标
龙潭村	年平均	0.1480	平均值	0.21	达标
而	日平均	1.8578	230415	1.24	达标
西登村	年平均	0.0806	平均值	0.12	达标
古化县	日平均	2.2381	230914	1.49	达标
南华村	年平均	0.2253	平均值	0.32	达标

预测点	平均时段	最大贡献值(μg/m³)	出现时间	占标率%	达标情况
南华小学	日平均	1.7488	230914	1.17	达标
用十八子	年平均	0.1924	平均值	0.27	达标
东村	日平均	3.0077	231109	2.01	达标
27/17	年平均	0.2561	平均值	0.37	达标
东村树人小学	日平均	2.3945	231109	1.60	达标
小们柳八小子	年平均	0.2588	平均值	0.37	达标
杏坛中心区规划居住用	日平均	1.9367	231003	1.29	达标
地	年平均	0.1105	平均值	0.16	达标
网格点(0,100)	日平均	26.0598	230826	17.37	达标
网格点(0,100)	年平均	7.6145	平均值	10.88	达标

表5.3-32 PM₁₀叠加环境现状浓度、已批在建源的预测结果表

预测点	平均时段	浓度增量(μg/m³)	出现时间	现状浓度(μg/m³)	叠加后浓度(μg/m³)	占标率%	达标情况
光华村	95%保证率日平均	0.5314	230224	76.0000	76.5314	51.02	达标
几千竹	年平均	2.9741	平均值	31.9507	34.9248	49.89	达标
潘祥实验学校	95%保证率日平均	2.3170	230302	73.0000	75.3170	50.21	达标
(個件失過子仪)	年平均	1.5153	平均值	31.9507	33.4660	47.81	达标
光华小学	95%保证率日平均	2.7340	230302	73.0000	75.7340	50.49	达标
九年小子	年平均	2.3406	平均值	31.9507	34.2913	48.99	达标
麦村	95%保证率日平均	0.0130	230302	73.0000	73.0130	48.68	达标
夕 们	年平均	0.3546	平均值	31.9507	32.3053	46.15	达标
麦村小学	95%保证率日平均	0.0344	230302	73.0000	73.0344	48.69	达标
支利小子	年平均	0.4344	平均值	31.9507	32.3851	46.26	达标
罗水社区	95%保证率日平均	0.0000	230302	73.0000	73.0000	48.67	达标
夕 水 社 位	年平均	0.3799	平均值	31.9507	32.3306	46.19	达标
杏坛社区	95%保证率日平均	0.0000	230302	73.0000	73.0000	48.67	达标
省以社区	年平均	0.1401	平均值	31.9507	32.0908	45.84	达标
杏联中学	95%保证率日平均	0.0000	230302	73.0000	73.0000	48.67	达标
台	年平均	0.1625	平均值	31.9507	32.1132	45.88	达标
龙潭村	95%保证率日平均	0.0000	230302	73.0000	73.0000	48.67	达标
儿 得们	年平均	0.2681	平均值	31.9507	32.2188	46.03	达标
西登村	95%保证率日平均	0.0001	230302	73.0000	73.0001	48.67	达标
四豆们	年平均	0.1259	平均值	31.9507	32.0766	45.82	达标
南华村	95%保证率日平均	0.4197	230302	73.0000	73.4197	48.95	达标
	年平均	0.3250	平均值	31.9507	32.2757	46.11	达标
南华小学	95%保证率日平均	0.3410	230302	73.0000	73.3410	48.89	达标

预测点	平均时段	浓度增量(μg/m³)	出现时间	现状浓度(μg/m³)	叠加后浓度(μg/m³)	占标率%	达标情况
	年平均	0.2806	平均值	31.9507	32.2313	46.04	达标
东村	95%保证率日平均	0.0434	230302	73.0000	73.0434	48.70	达标
2007	年平均	0.3735	平均值	31.9507	32.3242	46.18	达标
东村树人小学	95%保证率日平均	0.0490	230302	73.0000	73.0490	48.70	达标
水川州八八子	年平均	0.3843	平均值	31.9507	32.3350	46.19	达标
杏坛中心区规	95%保证率日平均	0.0000	230302	73.0000	73.0000	48.67	达标
划居住用地	年平均	0.2104	平均值	31.9507	32.1611	45.94	达标
网格点(0,100)	95%保证率日平均	20.8557	231103	61.0000	81.8557	54.57	达标
网格点(0,100)	年平均	8.8168	平均值	31.9507	40.7675	58.24	达标

6)PM_{2.5}

表5.3-33 PM_{2.5} 贡献质量浓度预测结果表

预测点	平均时段	最大贡献值(μg/m³)	出现时间	占标率%	达标情况
光华村	日平均	7.7537	230625	10.34	达标
九千(1)	年平均	1.4761	平均值	4.22	达标
潘祥实验学校	日平均	6.0662	230908	8.09	达标
御件	年平均	0.6743	平均值	1.93	达标
光华小学	日平均	7.1700	230526	9.56	达标
儿牛小子	年平均	1.1737	平均值	3.35	达标
麦村	日平均	1.8557	230415	2.47	达标
友们 -	年平均	0.0933	平均值	0.27	达标
麦村小学	日平均	2.2351	230906	2.98	达标
<u> </u>	年平均	0.1033	平均值	0.30	达标
罗水社区	日平均	2.0393	230818	2.72	达标
夕 小 仕 兦	年平均	0.0982	平均值	0.28	达标
杏坛社区	日平均	0.8595	230530	1.15	达标
省坛任区	年平均	0.0432	平均值	0.12	达标
杏联中学	日平均	0.9335	231004	1.24	达标
省城中子	年平均	0.0488	平均值	0.14	达标
龙潭村	日平均	1.2982	230601	1.73	达标
光 桿鬥	年平均	0.0990	平均值	0.28	达标
西登村	日平均	1.3984	230415	1.86	达标
四金竹	年平均	0.0527	平均值	0.15	达标
古化村	日平均	1.7453	230519	2.33	达标
南华村	年平均	0.1453	平均值	0.42	达标

预测点	平均时段	最大贡献值(μg/m³)	出现时间	占标率%	达标情况
南华小学	日平均	1.3060	230519	1.74	达标
用十八子	年平均	0.1251	平均值	0.36	达标
东村	日平均	1.7492	230925	2.33	达标
东 们	年平均	0.1630	平均值	0.47	达标
东村树人小学	日平均	1.6803	230925	2.24	达标
为有种人有一	年平均	0.1585	平均值	0.45	达标
杏坛中心区规划居住用	日平均	1.0155	230530	1.35	达标
地	年平均	0.0582	平均值	0.17	达标
网格点(-100,-300)	日平均	14.2641	231010	19.02	达标
网格点(-50,250)	年平均	2.7679	平均值	7.91	达标

表5.3-34 PM_{2.5}叠加环境现状浓度、已批在建源的预测结果表

预测点	平均时段	浓度增量(μg/m³)	出现时间	现状浓度(μg/m³)	叠加后浓度(μg/m³)	占标率%	达标情况
光华村	95%保证率日平均	0.1488	230207	45.0000	45.1488	60.20	达标
几千竹	年平均	1.6969	平均值	20.5151	22.2120	63.46	达标
潘祥实验学校	95%保证率日平均	1.0524	231129	44.0000	45.0524	60.07	达标
(個件失過子仪)	年平均	0.8039	平均值	20.5151	21.3190	60.91	达标
光华小学	95%保证率日平均	0.0883	230207	45.0000	45.0883	60.12	达标
九年小子	年平均	1.3569	平均值	20.5151	21.8720	62.49	达标
麦村	95%保证率日平均	0.9377	231129	44.0000	44.9377	59.92	达标
夕 们	年平均	0.1632	平均值	20.5151	20.6783	59.08	达标
麦村小学	95%保证率日平均	1.8512	230206	43.0000	44.8512	59.80	达标
支利小子	年平均	0.1996	平均值	20.5151	20.7146	59.18	达标
罗水社区	95%保证率日平均	0.6663	231214	44.0000	44.6663	59.56	达标
夕 水 社 位	年平均	0.1749	平均值	20.5151	20.6900	59.11	达标
杏坛社区	95%保证率日平均	0.2761	231214	44.0000	44.2761	59.03	达标
省以社区	年平均	0.0656	平均值	20.5151	20.5806	58.80	达标
杏联中学	95%保证率日平均	0.3031	231214	44.0000	44.3031	59.07	达标
台	年平均	0.0747	平均值	20.5151	20.5898	58.83	达标
龙潭村	95%保证率日平均	0.5399	231129	44.0000	44.5399	59.39	达标
儿 得们	年平均	0.1499	平均值	20.5151	20.6650	59.04	达标
西登村	95%保证率日平均	0.6449	231129	44.0000	44.6449	59.53	达标
四豆们	年平均	0.0702	平均值	20.5151	20.5853	58.82	达标
南华村	95%保证率日平均	0.6191	231129	44.0000	44.6191	59.49	达标
一一一一一一一一	年平均	0.1815	平均值	20.5151	20.6966	59.13	达标
南华小学	95%保证率日平均	0.5691	231129	44.0000	44.5691	59.43	达标

预测点	平均时段	浓度增量(μg/m³)	出现时间	现状浓度(μg/m³)	叠加后浓度(μg/m³)	占标率%	达标情况
	年平均	0.1574	平均值	20.5151	20.6725	59.06	达标
东村	95%保证率日平均	0.1091	231214	44.0000	44.1091	58.81	达标
20/1/1	年平均	0.2043	平均值	20.5151	20.7193	59.20	达标
东村树人小学	95%保证率日平均	0.1107	231214	44.0000	44.1107	58.81	达标
小竹柳八小子	年平均	0.2024	平均值	20.5151	20.7175	59.19	达标
杏坛中心区规	95%保证率日平均	0.3932	231214	44.0000	44.3932	59.19	达标
划居住用地	年平均	0.0923	平均值	20.5151	20.6074	58.88	达标
网格点	95%保证率日平均	13.1418	231019	36.0000	49.1418	65.52	达标
(-200,-150)	7370 床盘中百十岁	13.1410	231017	30.0000	47.1410	03.32	270
网格点	年平均	3.2071	平均值	20.5151	23.7222	67.78	达标
(0,-250)	1 1 2 3	3.2071	1.00	20.3131	23., 222	07.70	,0/1/3

7)非甲烷总烃

表5.3-35 非甲烷总烃贡献值预测结果

预测点	平均时段	贡献值(μg/m³)	出现时间	占标率%	达标情况
光华村	1 小时	56.4942	23070507	6.28	达标
潘祥实验学校	1 小时	63.2909	23092804	7.03	达标
光华小学	1 小时	58.7729	23022208	6.53	达标
麦村	1 小时	51.4279	23020624	5.71	达标
麦村小学	1 小时	54.4960	23041424	6.06	达标
罗水社区	1 小时	41.2892	23112024	4.59	达标
杏坛社区	1 小时	31.4580	23051406	3.50	达标
杏联中学	1 小时	33.6820	23062906	3.74	达标
龙潭村	1 小时	28.4672	23082601	3.16	达标
西登村	1 小时	27.4599	23021801	3.05	达标
南华村	1 小时	32.1751	23091202	3.58	达标
南华小学	1 小时	31.0058	23091306	3.45	达标
东村	1 小时	31.2514	23091907	3.47	达标
东村树人小学	1 小时	32.3913	23071906	3.60	达标
杏坛中心区规划居住用地	1 小时	38.6448	23062906	4.29	达标
网格点(150,50)	1 小时	241.1632	23102603	26.80	达标

表5.3-36 非甲烷总烃贡献值及叠加现状浓度的预测结果

预测点	平均时段	浓度增量(μg/m³)	出现时间	现状浓度(μg/m³)	叠加后浓度(μg/m³)	占标率%	达标情况
光华村	1 小时	338.8232	23021707	515.0000	853.8232	42.69	达标
潘祥实验学校	1 小时	297.3537	23111004	515.0000	812.3537	40.62	达标
光华小学	1 小时	337.3813	23031202	515.0000	852.3813	42.62	达标
麦村	1 小时	293.6903	23061604	515.0000	808.6903	40.43	达标
麦村小学	1 小时	261.3068	23081106	515.0000	776.3068	38.82	达标
罗水社区	1 小时	283.4770	23031804	515.0000	798.4770	39.92	达标
杏坛社区	1 小时	302.3843	23110304	515.0000	817.3843	40.87	达标
杏联中学	1 小时	311.0532	23110304	515.0000	826.0532	41.30	达标
龙潭村	1 小时	238.6589	23031206	515.0000	753.6589	37.68	达标
西登村	1 小时	196.2794	23110601	515.0000	711.2794	35.56	达标
南华村	1 小时	176.8721	23061024	515.0000	691.8721	34.59	达标
南华小学	1 小时	174.8755	23061024	515.0000	689.8755	34.49	达标
东村	1 小时	183.9262	23021707	515.0000	698.9262	34.95	达标
东村树人小学	1 小时	181.2906	23021707	515.0000	696.2906	34.81	达标
杏坛中心区规划居住用地	1 小时	346.7563	23110304	515.0000	861.7562	43.09	达标
网格点(750,150)	1 小时	591.5967	23070207	515.0000	1106.5970	55.33	达标

8)TVOC

表5.3-37 TVOC 贡献值预测结果表

预测点	平均时段	贡献值(μg/m³)	出现时间	占标率%	达标情况
光华村	8 小时	13.1212	23032108	2.19	达标
潘祥实验学校	8 小时	10.3609	23052508	1.73	达标
光华小学	8 小时	12.0667	23080208	2.01	达标
麦村	8 小时	10.1403	23120808	1.69	达标
麦村小学	8 小时	10.8660	23120808	1.81	达标
罗水社区	8 小时	6.2299	23051408	1.04	达标
杏坛社区	8 小时	2.9589	23020724	0.49	达标
杏联中学	8 小时	3.9402	23100408	0.66	达标
龙潭村	8 小时	2.3505	23011124	0.39	达标
西登村	8 小时	2.5245	23123108	0.42	达标
南华村	8 小时	4.7388	23070208	0.79	达标
南华小学	8 小时	4.0280	23121408	0.67	达标
东村	8 小时	4.0659	23110908	0.68	达标
东村树人小学	8 小时	3.6484	23110908	0.61	达标
杏坛中心区规划居住用地	8 小时	4.3719	23100408	0.73	达标
网格点(0,100)	8 小时	38.5446	23120916	6.42	达标

表5.3-38 TVOC 叠加现状浓度的预测结果表

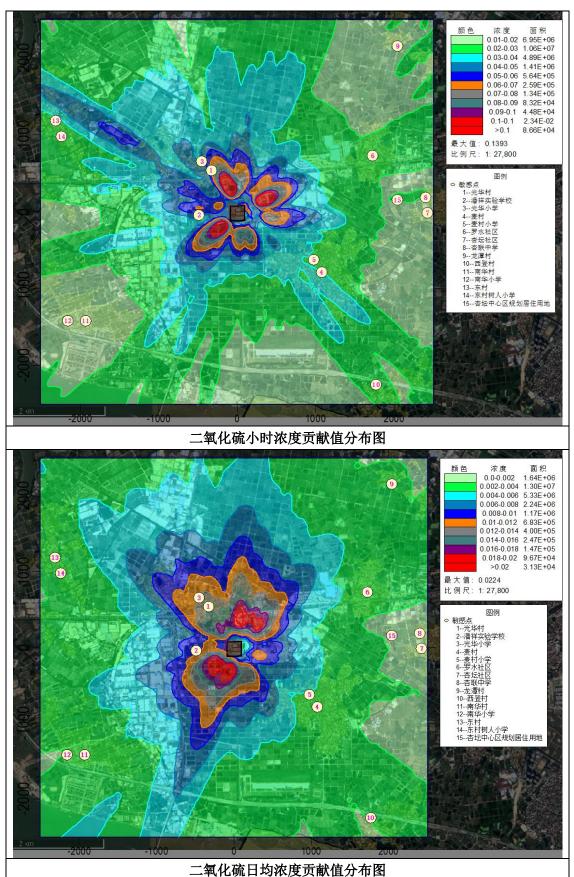
预测点	平均时段	浓度增量(μg/m³)	出现时间	现状浓度(μg/m³)	叠加后浓度 (μg/m³)	占标率%	达标情况
光华村	8 小时	89.4829	23071908	133.3	222.7829	37.13	达标
潘祥实验学校	8 小时	84.3604	23121108	133.3	217.6604	36.28	达标
光华小学	8 小时	84.7629	23071908	133.3	218.0629	36.34	达标
麦村	8 小时	47.9323	23081108	133.3	181.2323	30.21	达标
麦村小学	8 小时	69.6664	23081108	133.3	202.9664	33.83	达标
罗水社区	8 小时	130.9684	23053008	133.3	264.2684	44.04	达标
杏坛社区	8 小时	52.0046	23080408	133.3	185.3046	30.88	达标
杏联中学	8 小时	69.6221	23110308	133.3	202.9221	33.82	达标
龙潭村	8 小时	64.3209	23110408	133.3	197.6209	32.94	达标
西登村	8 小时	23.6889	23110608	133.3	156.9889	26.16	达标
南华村	8 小时	62.2185	23061024	133.3	195.5184	32.59	达标
南华小学	8 小时	62.4154	23061024	133.3	195.7154	32.62	达标
东村	8 小时	34.3537	23071908	133.3	167.6537	27.94	达标
东村树人小学	8 小时	36.9938	23121008	133.3	170.2938	28.38	达标
杏坛中心区规划居住用 地	8 小时	70.9508	23110308	133.3	204.2508	34.04	达标
网格点(900,550)	8 小时	192.9103	23072208	133.3	326.2103	54.37	达标

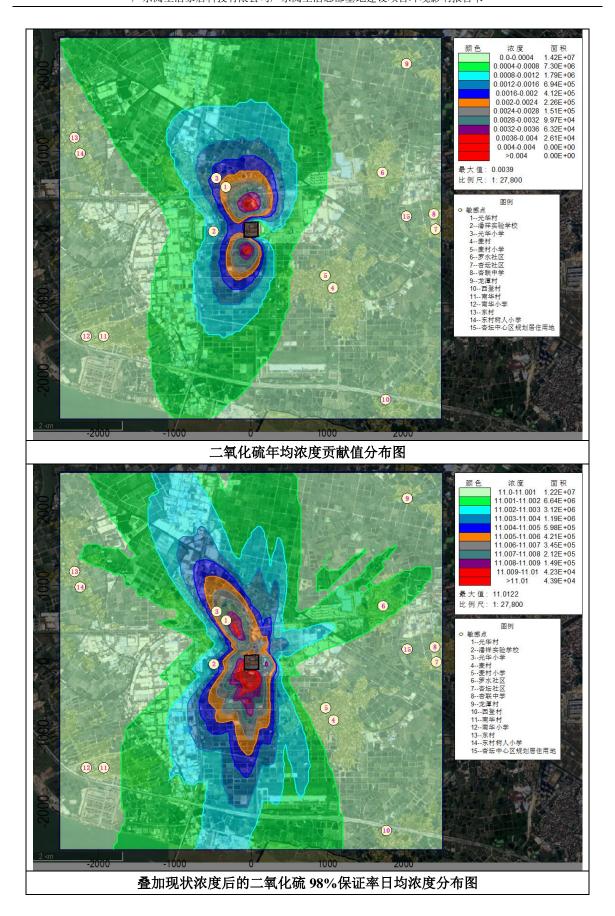
9)二甲苯

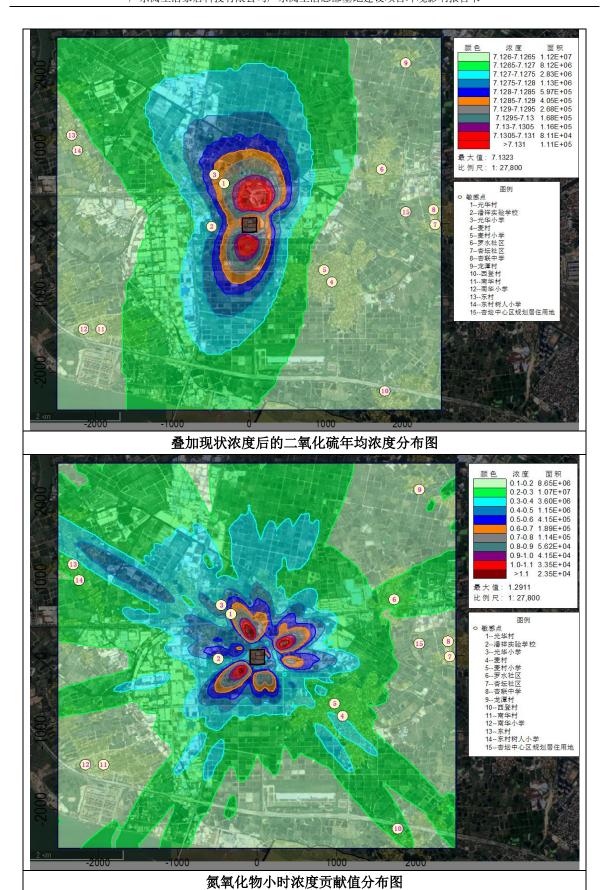
表5.3-39 二甲苯贡献值预测结果表

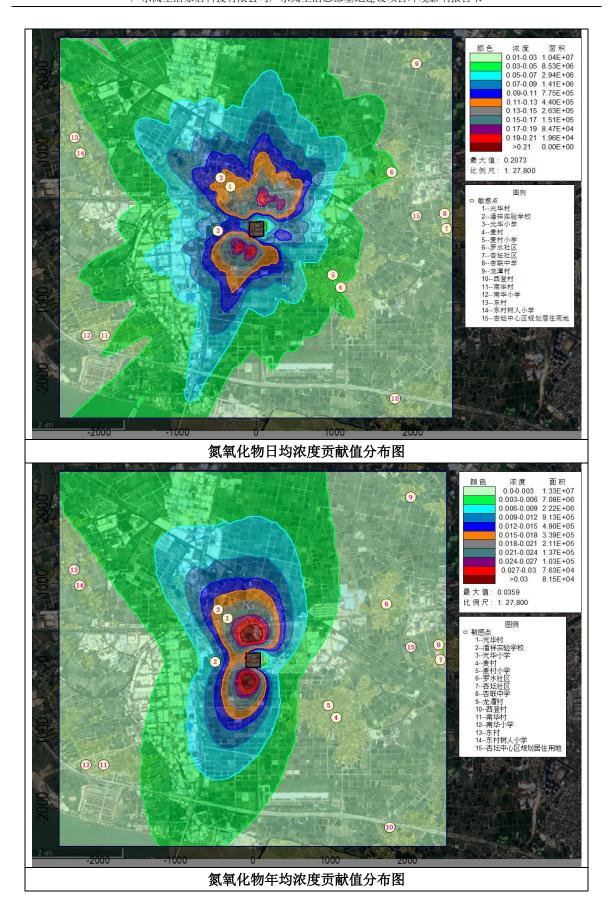
预测点	平均时段	贡献值(μg/m³)	出现时间	占标率%	达标情况
光华村	1 小时	3.0882	23102821	1.54	达标
潘祥实验学校	1 小时	3.2936	23031319	1.65	达标
光华小学	1 小时	3.5485	23022208	1.77	达标
麦村	1 小时	3.1148	23020624	1.56	达标
麦村小学	1 小时	3.2578	23041424	1.63	达标
罗水社区	1 小时	2.5915	23112024	1.30	达标
杏坛社区	1 小时	1.9701	23051406	0.99	达标
杏联中学	1 小时	2.1004	23062906	1.05	达标
龙潭村	1 小时	1.7250	23082601	0.86	达标
西登村	1 小时	1.7393	23021801	0.87	达标
南华村	1 小时	1.9776	23091202	0.99	达标
南华小学	1 小时	1.9029	23091306	0.95	达标
东村	1 小时	1.9204	23102807	0.96	达标
东村树人小学	1 小时	2.0163	23071906	1.01	达标
杏坛中心区规划居住用地	1 小时	2.4265	23062906	1.21	达标
网格点(50,100)	8 小时	10.1428	23041208	5.07	达标

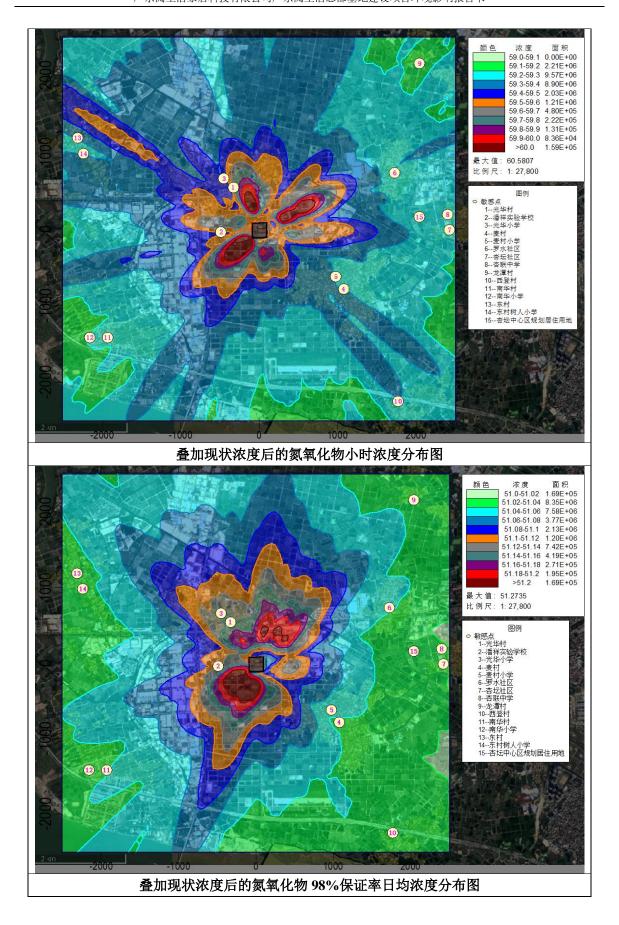
表5.3-40 二甲苯叠加现状浓度的预测结果表

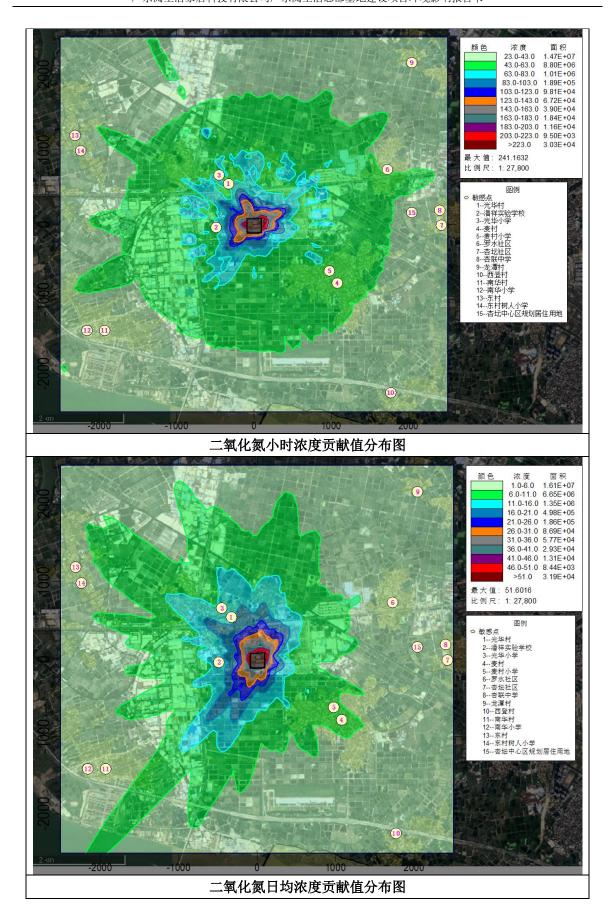

预测点	平均时段	浓度增量(μg/m³)	出现时间	现状浓度(μg/m³)	叠加后浓度(μg/m³)	占标率%	达标情况
光华村	1 小时	3.0882	23102821	27.0000	30.0882	15.04	达标
潘祥实验学校	1 小时	3.2936	23031319	27.0000	30.2936	15.15	达标
光华小学	1 小时	3.5485	23022208	27.0000	30.5485	15.27	达标
麦村	1 小时	3.1148	23020624	27.0000	30.1148	15.06	达标
麦村小学	1 小时	3.2578	23041424	27.0000	30.2578	15.13	达标
罗水社区	1 小时	2.5915	23112024	27.0000	29.5915	14.80	达标
杏坛社区	1 小时	1.9701	23051406	27.0000	28.9701	14.49	达标
杏联中学	1 小时	2.1004	23062906	27.0000	29.1004	14.55	达标
龙潭村	1 小时	1.7250	23082601	27.0000	28.7250	14.36	达标
西登村	1 小时	1.7393	23021801	27.0000	28.7393	14.37	达标
南华村	1 小时	1.9776	23091202	27.0000	28.9776	14.49	达标
南华小学	1 小时	1.9029	23091306	27.0000	28.9029	14.45	达标
东村	1 小时	1.9204	23102807	27.0000	28.9204	14.46	达标
东村树人小学	1 小时	2.0163	23071906	27.0000	29.0163	14.51	达标
杏坛中心区规划居住用 地	1 小时	2.4265	23062906	27.0000	29.4265	14.71	达标
网格点(50,100)	1 小时	10.1428	23041208	27.0000	37.1428	18.57	达标

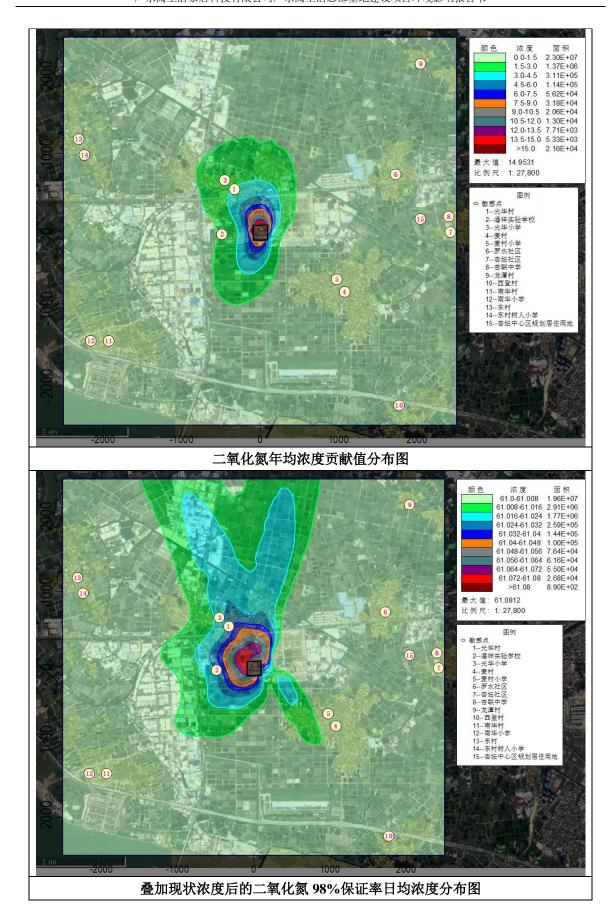

10)最大落地浓度贡献值预测结果

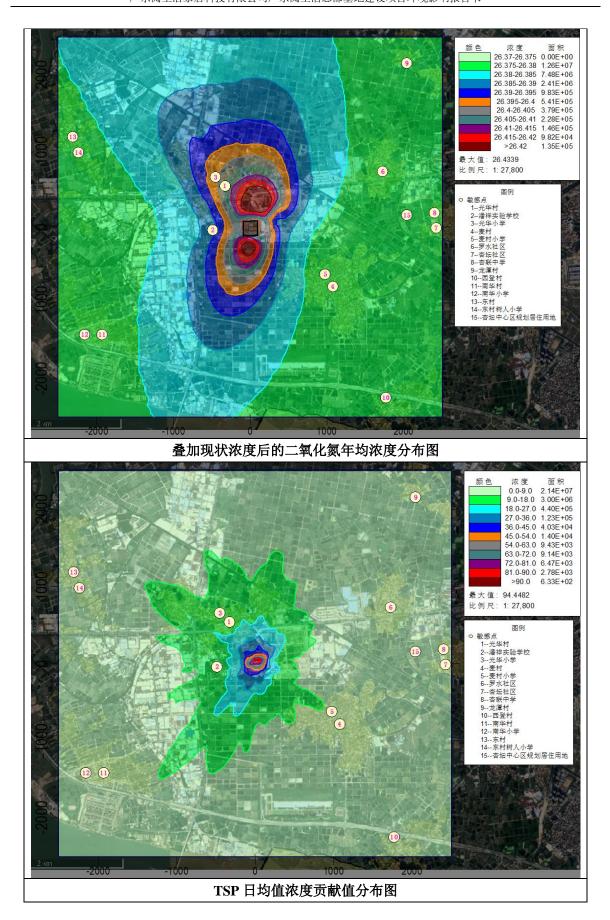

表5.3-41 最大落地浓度增量预测结果表

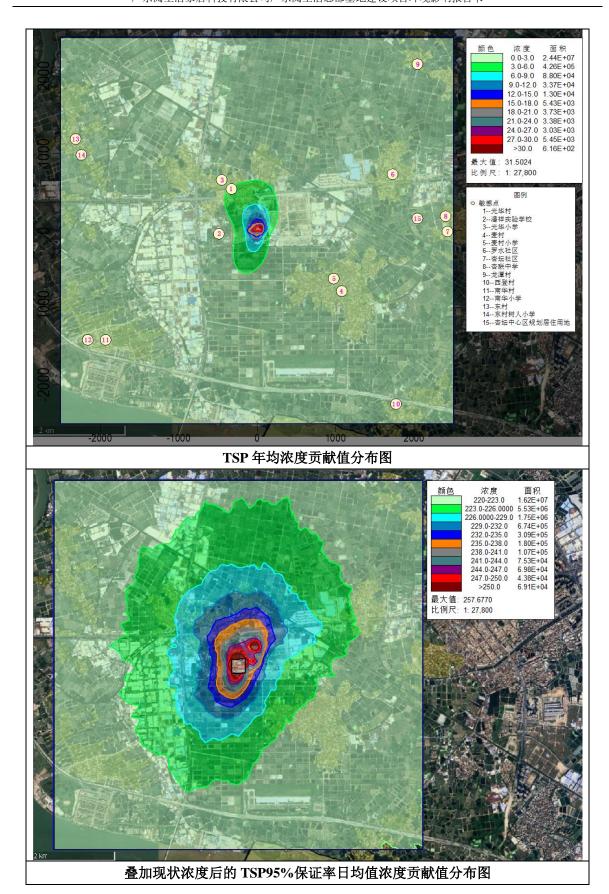

污染物	平均时段	敏感保护	目标	网格点		
15条物		最大浓度 (μg/m³)	占标率%	最大浓度(μg/m³)	占标率%	
	1 小时	0.0628	0.01	0.1393	0.03	
SO_2	日平均	0.0137	0.01	0.0224	0.01	
	年平均	0.0023	0.00	0.0039	0.01	
	1 小时	63.2909	7.03	241.1632	26.80	
NO_2	日平均	15.0551	5.02	51.6016	17.20	
	年平均	3.1457	1.57	14.9531	7.48	
	1 小时	0.5821	0.23	1.2911	0.52	
NOx	日平均	0.1274	0.13	0.2073	0.21	
	年平均	0.0209	0.04	0.0359	0.07	
TSP	日平均	15.0551	5.02	94.4482	31.48	
151	年平均	3.1457	1.57	31.5024	15.75	
PM _{2.5}	日平均	7.7537	10.34	14.2641	19.02	
1 1012.5	年平均	1.4761	4.22	2.7679	7.91	
PM ₁₀	日平均	10.7546	7.17	26.0598	17.37	
1 14110	年平均	2.1995	3.14	7.6145	10.88	
NMHC	1 小时	63.2909	7.03	241.1632	26.80	
二甲苯	1 小时	3.5485	1.77	10.1428	5.07	
TVOC	8 小时	13.1212	2.19	38.5446	6.42	

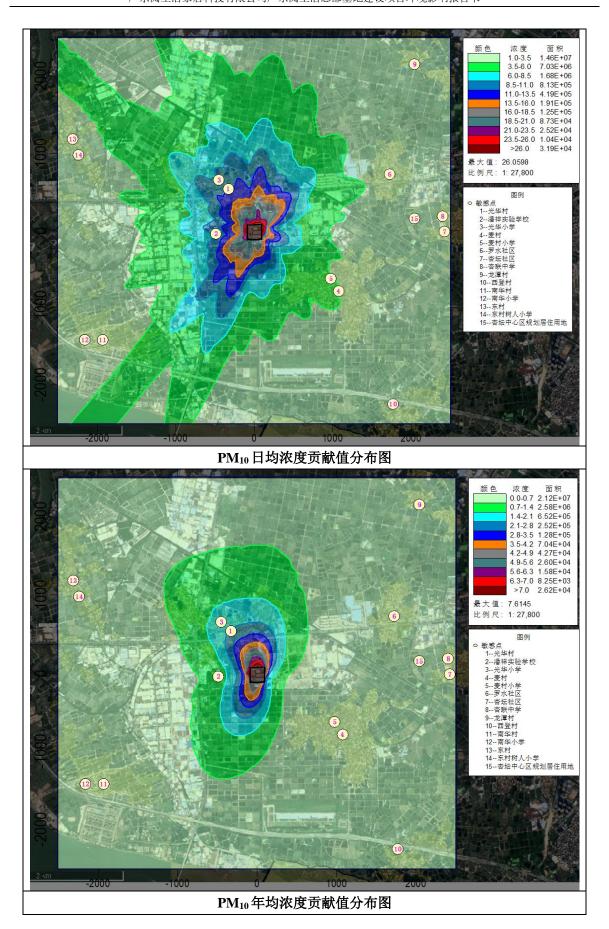

11)正常工况大气环境影响预测结果图(浓度单位: μg/m³)

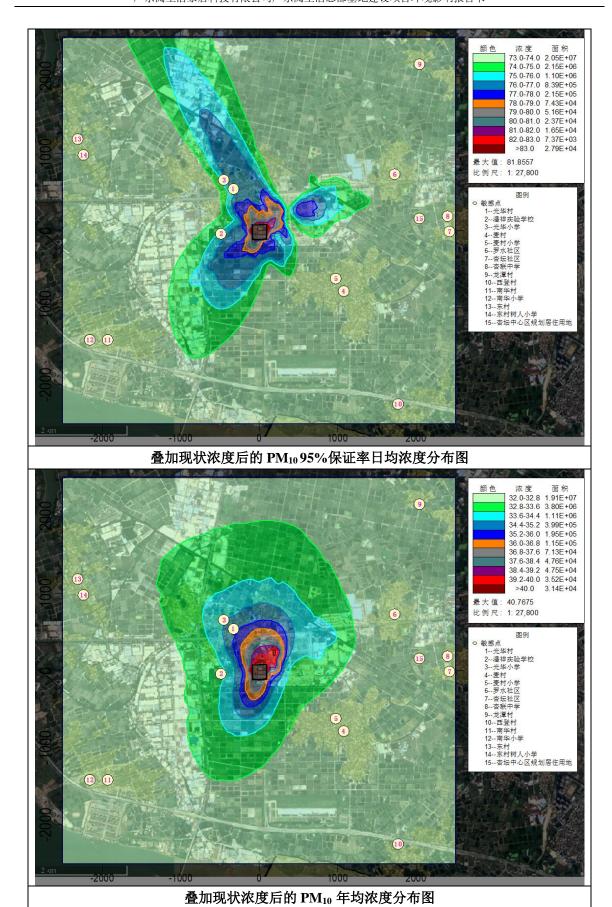


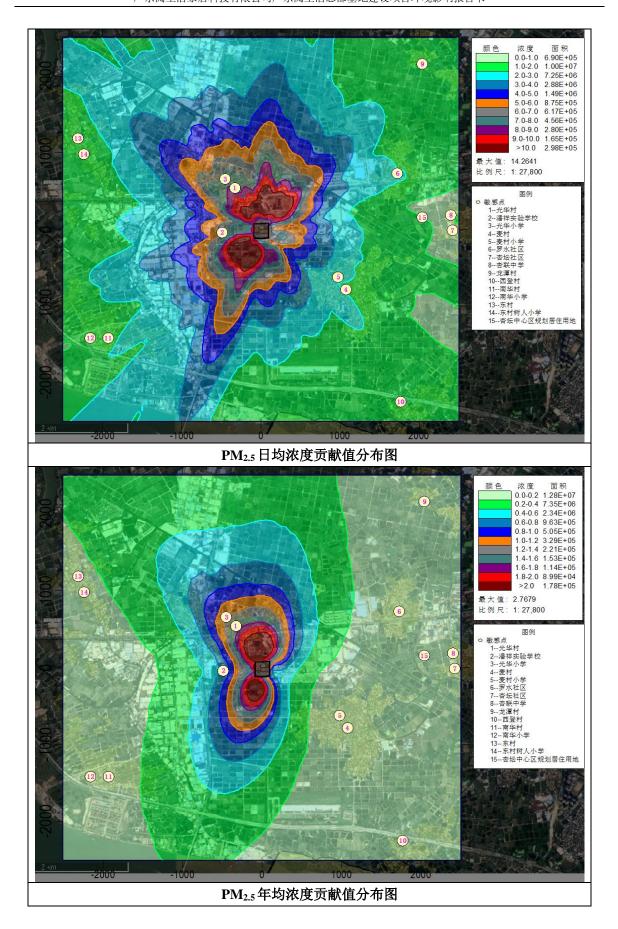


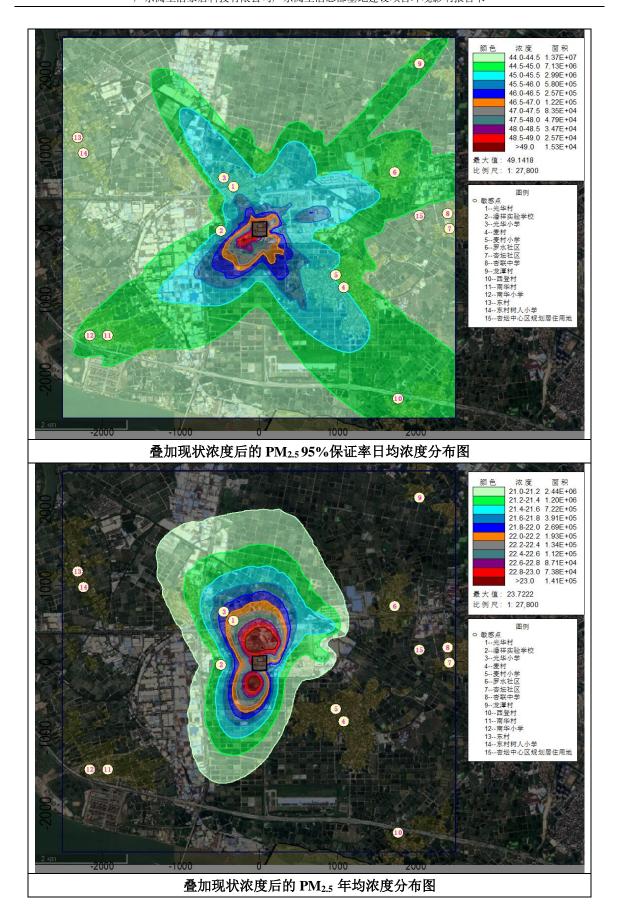


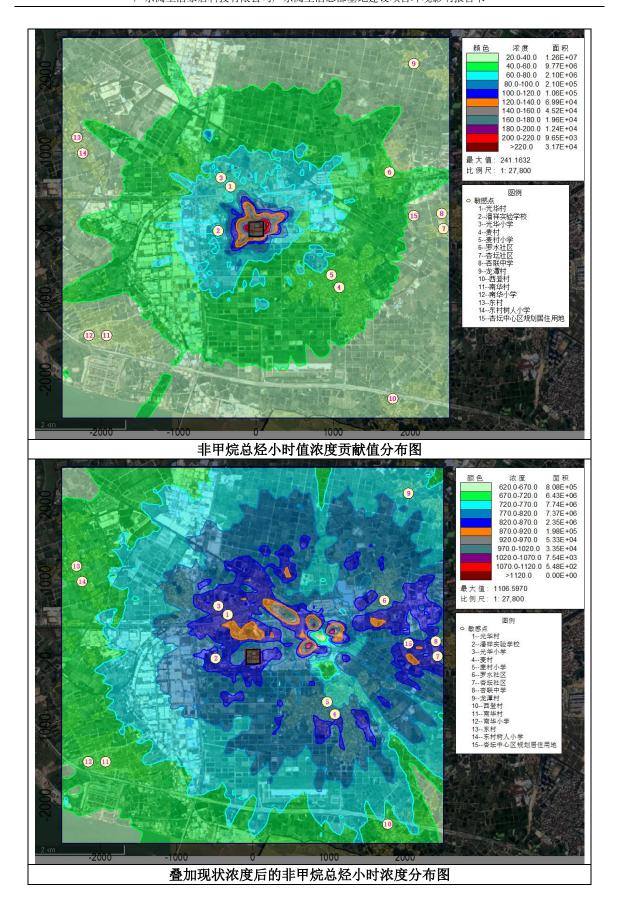


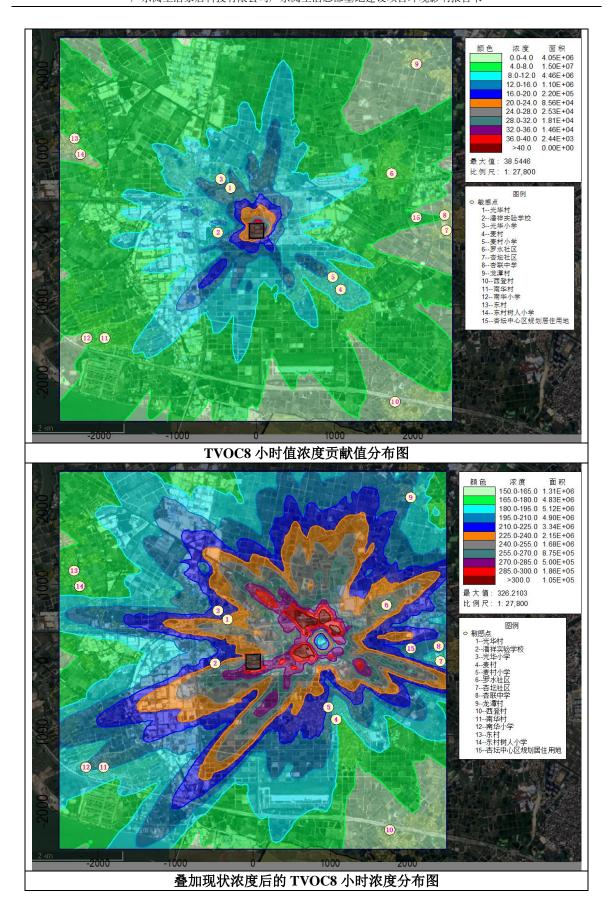












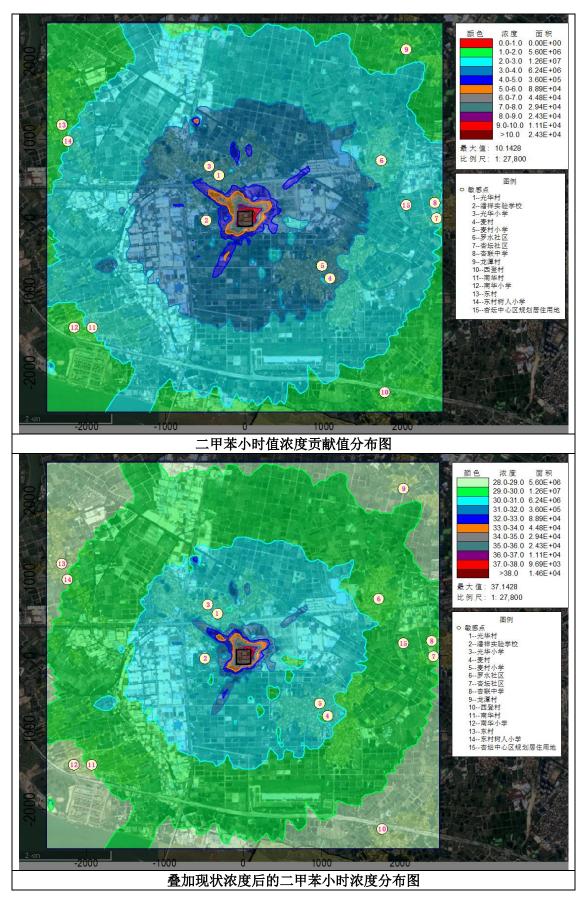


图5.3-19 评价范围内预测因子的预测结果分布图 单位: µg/m³

12)预测因子的环境影响与环境功能区划的相符性分析

综上可知:

- ①正常排放时预测因子 SO_2 、 NO_2 、 NO_3 、 PM_{10} 、 $PM_{2.5}$ 、非甲烷总烃、TVOC、TSP、二甲苯在网格点及环境空气保护目标处**短期浓度贡献信**占标率均小于 <math>100%:
- ②正常排放时预测因子 SO_2 、 NO_2 、 NO_3 、 PM_{10} 、 $PM_{2.5}$ 、TSP 在网格点及环境空气保护目标处**年均浓度贡献值**占标率均小于 30%:
- ③ PM₁₀、TSP、SO₂、NO₂、PM_{2.5}、NOx 叠加现状浓度、已批在建拟建源后的保证率日平均浓度均能符合环境空气质量标准;
- ④ PM_{10} 、 SO_2 、 NO_2 、 $PM_{2.5}$ 叠加现状浓度、已批在建拟建源后的年平均浓度均能符合环境空气质量标准;
- ⑤非甲烷总烃、NOx、二甲苯叠加现状浓度、已批在建拟建源后的 1h 平均浓度 均能够符合环境空气质量标准;
- ⑥TVOC 叠加现状浓度、已批在建拟建源后的 8h 平均浓度均能够符合环境空气质量标准。

综上所述,可认为本项目运营期废气正常排放时,对环境影响可以接受。

13)大气防护距离

由《环境影响评价技术导则 大气环境》(HJ 2.2-2018)可知,大气环境防护距 离是为保护人群健康,减少正常排放条件下大气污染物对居住区的环境影响,在项目 厂界以外设置的环境防护距离。

根据预测结果可知,本次预测因子在环境空气保护目标和网格处的短期贡献浓度 均未出现超标现象,因此本项目无需设大气环境防护距离。

(2) 非正常工况下 1 小时最大浓度及其占标率的分析

本项目非正常排放条件下,预测因子在环境空气保护目标和网格点处 1h 最大浓度贡献值及占标率的统计情况如表 5.3-42 所示。

预测结果表明,在非正常工况(包括点火开炉、设备检修、污染物排放控制措施 达不到应有效率、工艺设备运转异常,本项目设定为单个废气处理设施失效情况)下, 评价范围内各污染物的最大地面小时浓度贡献值均有所增加,对周边环境有一定影响。

本项目建成后必须加强废气处理措施的日常运行维护管理,定期检修废气处理设

施,确保其达标稳定排放。若废气处理设施出现故障不能正常运行时,应立即停产进行维修,避免对周围环境造成污染。由于在典型小时的气象条件下遇上事故性排放的概率较小,因此建设单位运营期加强污染防治措施的管理和维护保养,可有效降低废气非正常排放的潜在风险性。

表5.3-42 非正常工况下 1 小时最大浓度及占标率统计表

污染因子	环境空气保护目标	评价时段	最大贡献值(μg/m³)	出现时间	占标率%	达标情况
	光华村	1 小时	363.4563	23070507	40.38	达标
	潘祥实验学校	1 小时	282.0398	23082819	31.34	达标
	光华小学	1 小时	241.2843	23070507	26.81	达标
	麦村	1 小时	160.8057	23090704	17.87	达标
	麦村小学	1 小时	161.8082	23090523	17.98	达标
	罗水社区	1 小时	162.6111	23081707	18.07	达标
	杏坛社区	1 小时	103.8398	23041421	11.54	达标
TSP	杏联中学	1 小时	120.5755	23121123	13.40	达标
151	龙潭村	1 小时	104.9275	23080804	11.66	达标
	西登村	1 小时	130.9646	23090703	14.55	达标
	南华村	1 小时	82.1687	23020708	9.13	达标
	南华小学	1 小时	88.4634	23082505	9.83	达标
	东村	1 小时	152.4764	23071907	16.94	达标
	东村树人小学	1 小时	133.8092	23042107	14.87	达标
	杏坛中心区规划居住用地	1 小时	128.1293	23121123	14.24	达标
	网格点(-100,250)	1 小时	801.0172	23070507	89.00	达标
	光华村	1 小时	74.7174	23070507	3.74	达标
	潘祥实验学校	1 小时	51.7929	23082819	2.59	达标
	光华小学	1 小时	48.5611	23070507	2.43	达标
非甲烷总烃	麦村	1 小时	39.2325	23090704	1.96	达标
#中灰心紅	麦村小学	1 小时	34.6177	23090523	1.73	达标
	罗水社区	1 小时	34.1825	23081707	1.71	达标
	杏坛社区	1 小时	25.2216	23041421	1.26	达标
	杏联中学	1 小时	24.7560	23121123	1.24	达标

污染因子	环境空气保护目标	评价时段	最大贡献值(μg/m³)	出现时间	占标率%	达标情况
	龙潭村	1 小时	24.1966	23082405	1.21	达标
	西登村	1 小时	27.3853	23090703	1.37	达标
	南华村	1 小时	18.6504	23030919	0.93	达标
	南华小学	1 小时	22.4538	23030919	1.12	达标
	东村	1 小时	32.1764	23042107	1.61	达标
	东村树人小学	1 小时	26.9611	23042107	1.35	达标
	杏坛中心区规划居住用地	1 小时	25.9660	23121123	1.30	达标
	网格点(-100,300)	1 小时	174.6386	23070507	8.73	达标
	光华村	1 小时	9.0980	23070507	4.55	达标
	潘祥实验学校	1 小时	5.9262	23102720	2.96	达标
	光华小学	1 小时	5.8853	23070507	2.94	达标
	麦村	1 小时	4.7488	23090704	2.37	达标
	麦村小学	1 小时	4.0979	23090523	2.05	达标
	罗水社区	1 小时	3.9715	23081707	1.99	达标
	杏坛社区	1 小时	3.0174	23041421	1.51	达标
二甲苯	杏联中学	1 小时	2.8320	23121123	1.42	达标
一十千	龙潭村	1 小时	2.9312	23082405	1.47	达标
	西登村	1 小时	3.2445	23090703	1.62	达标
	南华村	1 小时	2.1937	23030919	1.10	达标
	南华小学	1 小时	2.7273	23030919	1.36	达标
	东村	1 小时	3.8295	23042107	1.91	达标
	东村树人小学	1 小时	3.1648	23042107	1.58	达标
	杏坛中心区规划居住用地	1 小时	2.9262	23121123	1.46	达标
	网格点(-100,300)	1 小时	21.1670	23070507	10.58	达标
TVOC	光华村	1 小时	74.7174	23070507	6.23	达标

污染因子	环境空气保护目标	评价时段	最大贡献值(μg/m³)	出现时间	占标率%	达标情况
	潘祥实验学校	1 小时	51.7929	23082819	4.32	达标
	光华小学	1 小时	48.5611	23070507	4.05	达标
	麦村	1 小时	39.2325	23090704	3.27	达标
	麦村小学	1 小时	34.6177	23090523	2.88	达标
	罗水社区	1 小时	34.1825	23081707	2.85	达标
	杏坛社区	1 小时	25.2216	23041421	2.10	达标
	杏联中学	1 小时	24.7560	23121123	2.06	达标
	龙潭村	1 小时	24.1966	23082405	2.02	达标
	西登村	1 小时	27.3853	23090703	2.28	达标
	南华村	1 小时	18.6504	23030919	1.55	达标
	南华小学	1 小时	22.4538	23030919	1.87	达标
	东村	1 小时	32.1764	23042107	2.68	达标
	东村树人小学	1 小时	26.9611	23042107	2.25	达标
	杏坛中心区规划居住用地	1 小时	25.9660	23121123	2.16	达标
	网格点(-100,300)	1 小时	174.6386	23070507	14.55	达标

5.3.10 大气污染物排放量核算结果

5.3.10.1有组织排放量核算

表5.3-43 大气污染物有组织排放量核算表

序号	排放口编	污染物	核算排放速率/	核算排放浓度/	核算年排
D 方	号	75条物	(kg/h)	(mg/m^3)	放量/ (t/a)
	·		一般排放口		
		颗粒物	0.0146	0.24	0.036
		VOCs	0.2614	4.36	0.802
1	G1	二甲苯	0.0375	0.63	0.099
		SO_2	0.0063	0.10	0.010
		NO_x	0.0584	0.97	0.096
2	G2	颗粒物	0.0034	0.03	0.011
3	G3	颗粒物	2.6129	50.25	8.623
4	G4	VOCs	0.0276	1.84	0.091
5	G5	颗粒物	0.8710	8.37	2.874
6	G6	颗粒物	0.0016	0.03	0.005
		颗粒物	0.0260	0.19	0.077
		VOCs	0.7479	5.34	2.059
7	G7	二甲苯	0.1125	0.80	0.298
		SO_2	0.0063	0.04	0.010
		NO _x	0.0584	0.42	0.096
8	G8	颗粒物	0.0034	0.03	0.011
9	G9	颗粒物	2.6129	25.12	8.623
10	G10	VOCs	0.0276	1.84	0.091
11	G11	颗粒物	0.8710	8.37	2.874
12	G12	颗粒物	0.0016	0.03	0.005
12	C12	颗粒物	0.0258	0.54	0.055
13	G13	VOCs	1.0925	22.76	2.299
14	G14	VOCs	0.0090	3.00	0.030
		颗粒物	/	/	23.194
	一般排放	VOCs	/	/	5.371
/	口合计	二甲苯	/	/	0.398
	μди	SO_2	/	/	0.021
		NO _x	/	/	0.193
		颗粒物	/	/	23.194
	有组织排	VOCs	/	/	5.371
/	放总计	二甲苯	/		0.398
		SO_2	/	/	0.021
		NO_x	/		0.193

5.3.10.2无组织排放量核算

表5.3-44 大气污染物无组织排放量核算表

序	排放源	污染物	产污环节	主要污染	国家或地方	亏染物排放标准	年排放量
号	11F/JX-1/JS	行架彻	177771	防治措施	标准名称	浓度限值/(mg/m³)	/(t/a)
1	厂房二 1F	颗粒物	木加工		DB44/27-2001	1.0	0.188
1) 厉— IF	VOCs	拼板、冷压	/	DB44/814-2010	2.0	0.014
2	厂房二 2F	颗粒物	木加工	/	DB44/27-2001	1.0	0.120
3	厂房二 3F	颗粒物	木磨		DB44/27-2001	1.0	0.426

序	排放源	污染物	产污环节	主要污染	国家或地方	污染物排放标准	年排放量
号	THF/XX-VIS	行条彻	1 1274.11	防治措施	标准名称	浓度限值/(mg/m³)	/(t/a)
		颗粒物			DB44/27-2001	1.0	3.503
4	厂房二 4F	VOCs	喷涂		DB44/814-2010	2.0	1.233
		二甲苯			DB44/814-2010	2.0	0.120
5	厂房二 5F	VOCs	贴绵		DB44/814-2010	2.0	0.139
6	厂房三 1F	颗粒物	木加工		DB44/27-2001	1.0	0.243
6) 房二 IF	VOCs	拼板、冷压		DB44/814-2010	2.0	0.014
7	厂房三 2F	颗粒物	木加工		DB44/27-2001	1.0	0.120
8	厂房三 3F	颗粒物	木磨		DB44/27-2001	1.0	0.426
		颗粒物			DB44/27-2001	1.0	3.636
9	厂房三 4F	VOCs	喷涂		DB44/814-2010	2.0	2.507
		二甲苯			DB44/814-2010	2.0	0.359
10	厂房三 5F	VOCs	贴绵		DB44/814-2010	2.0	0.139
11	厂房四 1F	颗粒物	机加工		DB44/27-2001	1.0	0.133
12	厂房四 3F	VOCs	贴绵		DB44/814-2010	2.0	0.139
/	无组织排放	颗粒物	/	/	/	/	8.795
/	九组织採放 总计	VOCs	/	/	/	/	4.183
/	空口	二甲苯	/	/		/	0.479

5.3.10.3年排放量核算

表5.3-45 大气污染物年排放量核算表

序号	污染物	年排放量/(t/a)
1	颗粒物	31.989
2	VOCs	9.554
3	二甲苯	0.876
4	SO_2	0.021
5	NO_x	0.193

表5.3-46 污染源非正常排放量核算表

非正常排	非正常排	污染物	非正常排放	非正常排放浓度	单次持续时	年发生频	非正常排放	
放源	放原因	行朱彻	速率/(kg/h)	$/ (mg/m^3)$	间/h	次/次	量(kg)	
		颗粒物	1.4273	23.79	1	1	1.4273	
G1		VOCs	2.6140	43.57	1	1	2.6140	
		二甲苯	0.3750	6.25	1	1	0.3750	
G2		颗粒物	0.3382	2.82	1	1	0.3382	
G3		颗粒物	17.4194	334.99	1	1	17.4194	
G4		VOCs	0.0551	3.68	1	1	0.0551	
G5	废气治理	颗粒物	5.8065	55.83	1	1	5.8065	
G6	设施失效	颗粒物	0.1567	2.61	1	1	0.1567	
	以 旭 大双	以旭大双	颗粒物	4.2641	30.46	1	1	4.2641
G7		VOCs	7.4788	53.42	1	1	7.4788	
		二甲苯	1.1250	8.04	1	1	1.1250	
G8		颗粒物	0.3382	2.82	1	1	0.3382	
G9		颗粒物	17.4194	167.49	1	1	17.4194	
G10		VOCs	0.0551	3.68	1	1	0.0551	
G11		颗粒物	5.8065	55.83	1	1	5.8065	

非正常排 放源	非正常排 放原因	Y ⊑ 164/3///	非正常排放 速率/(kg/h)	非正常排放浓度 / (mg/m³)	单次持续时 间/h	年发生频 次/次	非正常排放 量(kg)
G12		颗粒物	0.1567	2.61	1	1	0.1567
G13		颗粒物	12.9133	269.03	1	1	12.9133
013		VOCs	2.4278	50.58	1	1	2.4278
G14		VOCs	0.0180	6.00	1	1	0.0180

5.3.10.4污染源达标分析

(1) 喷漆废气(G1、G7、G13)

项目手工喷涂废气主要污染物为总 VOCs、颗粒物、二甲苯和臭气(以臭气浓度表征),厂房二油性漆喷漆废气收集并经水帘柜除漆雾,然后和烘干废气一起通过"二级水喷淋+干式过滤+沸石转轮吸附-脱附+催化燃烧"废气处理设施进行处理,处理后引至40m 排气筒 G1 排放;厂房三油性漆喷漆废气收集并经水帘柜除漆雾,然后和烘干废气一起通过2套"二级水喷淋+干式过滤"处理后一并经"沸石转轮吸附-脱附+催化燃烧"废气处理设施进行处理,处理后引至40m 排气筒 G7 排放。

UV 喷涂线主要污染物为总 VOCs、颗粒物和臭气(以臭气浓度表征),厂房二 UV 漆喷涂废气收集并经过滤棉除漆雾,然后和烘干废气一起通过"水喷淋+干式过滤器+活性炭吸附"废气处理设施进行处理,处理后引至 40m 排气筒 G13 排放。

以上废气中总 VOCs、二甲苯有组织排放可达到广东省地方标准《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)表 1 排气筒 VOCs 排放限值中II时段排放限值要求,G13 颗粒物有组织排放可达到广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准,G1、G7 颗粒物可达到(DB44/27-2001)中第二时段二级标准与(GB 9078-1996)表 2 "干燥炉、窑"中的二级标准的较严值,臭气浓度可达到《恶臭污染物排放标准》(GB14554-93)中表 2 相应排放限值。

(2) 天然气燃烧废气(G1、G7)

催化燃烧装置使用天然气辅助供能,天然气燃烧废气经排气筒 G1、G7 排放。颗粒物、烟气黑度可达到《工业炉窑大气污染物排放标准》(GB 9078-1996)表 2"干燥炉、窑"中的二级标准。

(3) 打磨废气(G3、G5、G9、G11)

打磨房废气主要有木磨粉尘、油磨粉尘、五金抛光粉尘,木磨粉尘、油磨粉尘收集并经"水帘柜"处理后引至 40m 排气筒 G3、G5、G9、G11 排放,颗粒物有组织排放可达到广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准。

(4) 木工粉尘(G2、G6、G8、G12)

木材加工过程中会产生一定量的木屑粉尘,木加工粉尘收集并经"布袋除尘器"处理后引至 40m 排气筒 G2、G6、G8、G12 排放,颗粒物有组织排放可达到广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准。

(5) 胶水废气(G4、G10、G14)

项目冷压和拼板工序使用的白乳胶,贴绵过程使用水性胶水,上述胶水使用过程中会产生少量的有机废气和臭气,主要污染物为总 VOCs 和臭气(以臭气浓度表征),胶水废气收集并经"活性炭吸附"处理后引至 40m 排气筒 G4、G10、G14 排放,其中总 VOCs 有组织排放可达到广东省地方标准《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)表 1 排气筒 VOCs 排放限值中 II 时段排放限值要求,臭气浓度可达到《恶臭污染物排放标准》(GB14554-93)中表 2 相应排放限值。

(6) 食堂油烟(G15、G16)

项目食堂产生的油烟经油烟净化器处理后,由楼顶排气筒 G15、G16 排放。企业设两个厨房,排气罩灶面总投影面积均为 7m²>6.6m²,食堂油烟可达到《饮食业油烟排放标准(试行)》(GB18483-2001)中表 2 大型规模排放标准值。

(7) 无组织废气

总 VOCs、二甲苯无组织排放可达到广东省地方标准《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)表 2 无组织排放监控点浓度限值要求。颗粒物无组织排放可达到广东省地方标准《大气污染物排放限值》(DB44/27-2001)颗粒物第二时段无组织排放监控浓度限值; 臭气浓度无组织排放可达到《恶臭污染物排放标准》(GB14554-93)中表 1 中的新改扩建厂界二级排放限值。

厂区内 NMHC 可达到广东省《固定污染源挥发性有机物综合排放标准》 (DB44/2367-2022)表 3 厂区内 VOCs 无组织排放限值。

综上,项目各大气污染物可达标排放,不会对周围大气环境造成太大影响。

5.3.11 大气防护距离

由《环境影响评价技术导则 大气环境》(HJ 2.2-2018)可知,大气环境防护距离 是为保护人群健康,减少正常排放条件下大气污染物对居住区的环境影响,在项目厂界 以外设置的环境防护距离。

根据预测结果可知,本次预测因子在环境空气保护目标和网格处的短期贡献浓度均 未出现超标现象,因此本项目无需设大气环境防护距离。

5.3.12 大气环境影响评价结论

5.3.12.1大气环境影响评价结论

根据预测结果可知:

- ①正常排放时预测因子 SO₂、NO₂、NO_x、PM₁₀、PM_{2.5}、非甲烷总烃、TVOC、TSP、二甲苯在网格点及环境空气保护目标处**短期浓度贡献值**占标率均小于 100%;
- ②正常排放时预测因子 SO_2 、 NO_2 、 NO_3 、 PM_{10} 、 $PM_{2.5}$ 、TSP 在网格点及环境空气保护目标处**年均浓度贡献信**占标率均小于 30%:
- ③ PM₁₀、TSP、SO₂、NO₂、PM_{2.5}、NOx 叠加现状浓度、己批在建拟建源后的保证率日平均浓度均能符合环境空气质量标准:
- ④ PM_{10} 、 SO_2 、 NO_2 、 $PM_{2.5}$ 叠加现状浓度、已批在建拟建源后的年平均浓度均能符合环境空气质量标准:
- ⑤非甲烷总烃、NOx、二甲苯叠加现状浓度、已批在建拟建源后的 1h 平均浓度均能够符合环境空气质量标准;
- ⑥TVOC 叠加现状浓度、已批在建拟建源后的 8h 平均浓度均能够符合环境空气质量标准。
- ⑦在非正常工况下,评价范围内各污染物的最大地面小时浓度贡献值均有所增加,对周边环境有一定影响。为了减少对周围敏感点的影响,建设单位必须加强废气处理措施的日常运行维护管理,定期检修废气处理设施,确保其达标稳定排放。

综上所述,可认为本项目运营期废气正常排放时,对环境影响可以接受。

5.3.12.2大气环境防护距离

本项目所有污染物对厂界外短期贡献浓度均未超过质量标准,无需设置大气环境防护距离。

综上,项目总体大气环境影响可接受。

5.3.13 大气环境影响评价自查表

	工作内容					自到	查项目				
评价等级	评价等级		一级☑				二级□			三岁	及□
与范围	评价范围	边+	≲=50km □]		边一	长 5~50	km□	边	χ =:	5 km
	SO ₂ +NO _x 排放量	≥ 2000t/a			500~	200	00t/a□		<	500	Ot/a ☑
		基本污染物			SO ₂	2 >					
评价因子	评价因子		O_2 , CO_3				包括二次 PM _{2.5 □}				
	N NI EL J	其他污染物				C,	C、 不包括二次 PM _{2.5} ☑				7
立なたが) マ (人 +二)/h-		度、NOx				77.1	3 D G		++· <i>I</i>	4.47.VA
评价标准	评价标准		标准☑	地力	7标准 	V					也标准☑
			−类区□			(20	二类区☑)23) 年	<u> </u>	一尖区	了小	二类区□
现状评价						(20)23) 牛				
	现状调查数据来源	长期例	行监测数		主行	管部	『门发布的			补充	≅监测☑
	现状评价		达标					不过	と标区☑		
污染源调		本项目正常		14114	替代的	污	其他在建	以拟建项	目汚 _	→ 1 F	
查	调查内容	本项目非正	∃ _ /	卆源□			杂源☑		く塚	污染源□	
			5染源□	ALICT	AT 20	БГ	OMS/AE	CALPU		<u> </u>	
	预测模型	AERMOD	ADMS	00		EL	DT	FF	网格模	型	其他
		V									
	预测范围	边长≥5					$5\sim$ 50km				5 km ☑
	预测因子	预测因子(NOx、TV					包括二 不包括二	次 PM ₂ 二次 PM		Z	
	正常排放短期浓度 贡献值	C本项目最大占标率≤100% ☑					C本	项目最大			
大气环境 影响预测	正常排放年均浓度	一类区		上本项目最大占标率 ≤10%□		[C本项目最大标率>10%□			% □	
与评价	贡献值	三10% □ 二类区 C本项目最大占标 ≤30% ☑			占标率	[C本项目最大标			示率>30% □	
	非正常排放 1h 浓		計长					1			
	度贡献值	(1) h	(非正常	占标图	壑≤]	100% ☑	C非ī	E常占标	率)	>100%□
	保证率日平均浓度		•					•			
	和年平均浓度叠加	(C叠加达标	示 ☑				C叠加	不达标。		
	<u>值</u>										
	区域环境质量的整 体变化情况		k ≤-20%					k >	-20%□		
		监测因子:				7	有组织废	与	V		
环境监测	污染源监测	二甲苯、臭			Ox,		无组织废		, l	无	监测□
计划		烟气黑度)					ACTION (IIII IX.)				
	环境质量型测	监测因子: TSP、二甲苯、TVOC、 NMHC、NOx					监测点位数(1) 无监测□			监测□	
	 环境影响	NMHC、NOX 可以接受 √ 不可以接受 □									
いせんない	大气环境防护距离						无				
评价结论		SO ₂ NO			Ox					VOCs	
	污染源年排放量t/a	0.02	1	0.	193		3	1.989		9	.554

5.4 运营期声环境影响预测与评价

5.4.1 项目声源

本项目产生的噪声主要来自生产过程中主体工程设备运转时产生的噪声,以及辅助设备如空压机、各种风机等运转时产生的噪声,其噪声级约为 60~90dB(A)。

5.4.2 预测模式

项目噪声源大多数声源都安置在厂房内,风机位于室外,根据声源噪声排放特点,并结合《环境影响评价技术导则 声环境》(HJ/T2.4-2021)的要求,本评价选择点声源预测模式,预测这些声源排放噪声随距离的衰减变化规律。

1、对室外噪声源主要考虑噪声的几何发散衰减及环境因素衰减:

$$L_{p}(r) = L_{p}(r_{0}) - 20\lg(r/r_{0})$$

式中:

 L_2 ——点声源在预测点产生的声压级,dB(A);

L1——点声源在参考点产生的声压级, dB(A):

r2——预测点距声源的距离, m;

r₁——参考点距声源的距离, m;

 ΔL ——各种因素引起的衰减量(包括声屏障、空气吸收等引起的衰减量),dB(A)。

- 2、根据《环境影响评价技术导则-声环境》(HJ 2.4-2021)对室内声源的预测方法, 声源位于室内,室内声源可采用等效室外声源声功率级法进行计算。
 - (1) 计算某一室内声源靠近围护结构处产生的倍频带声压级:

$$L_{p_1} = L_w + 10\lg(\frac{Q}{4\pi r^2} + \frac{4}{R})$$

式中:

Q——指向性因数:通常对无指向性声源,当声源放在房间中心时,Q=1;当放在一面墙的中心时,Q=2;当放在两面墙夹角时,Q=4;当放在三面墙夹角处时,Q=8。

R——房间常数: R=Sa/(1-a), S 为房间内表面面积, m^2 : a 为平均吸声系数。

- r——声源到靠近围护结构某点处的距离, m。
- (2) 计算出所有室内声源在围护结构处产生的 i 倍频带叠加声压级:

$$L_{p_{1i}}(T) = 10 \lg(\sum_{j=1}^{N} 10^{0.1 L p_{1ij}})$$

式中:

 $Lp_{li}(T)$ ——靠近围护结构处室内 N 个声源 i 倍频带的叠加声压级,dB;

Lpiii——室内 j 声源 i 倍频带的声压级, dB;

(3) 在室内近似为扩散声场地,按下式计算出靠近室外围护结构处的声压级:

$$L_{p_{2i}}(T) = L_{p_{1i}}(T) - (TL_i + 6)$$

式中:

 $Lp_{2i}(T)$ ——靠近围护结构处室外 N 个声源 i 倍频带的叠加声压级,dB;

TL:——围护结构 i 倍频带的隔声量, dB:

(4)将室外声源的声压级和透过面积换算成等效的室外声源,计算出中心位置位于透声面积(S)处的等效声源的倍频带声功率级。

$$L_{w} = L_{P2}(T) + 10 \lg s$$

(5) 按室外声源预测方法计算预测点处的 A 声级。

设第 i 个室外声源在预测点产生的 A 声级为 LAi,在 T 时间内该声源工作时间为 ti;第 j 个等效室外声源在预测点产生的 A 声级为 LAj,在 T 时间内该声源工作时间为 tj,则拟建工程声源对预测点产生的贡献值(Leqg)为:

$$L_{eqg} = 10 \lg \left[\frac{1}{T} \left(\sum_{i=1}^{N} t_i 10^{0.1 L_{Ai}} + \sum_{j=1}^{M} t_j 10^{0.1 L_{Aj}} \right) \right]$$

式中:

ti——在T时间内i声源工作时间,s;

ti——在T时间内i声源工作时间,s;

T——用于计算等效声级的时间, s;

N——室外声源个数;

M——等效室外声源个数;

(6) 预测点的预测等效声级(Leq) 计算:

$$L_{eq} = 10\lg(10^{0.1L_{eqg}} + 10^{0.1L_{eqb}})$$

式中:

Leq——建设项目声源在预测点的等效声级贡献量,dB(A);

Legb——预测点背景值,dB(A);

(7) 预测值计算采用点声源的几何发散衰减公式:

$$L_{oct(r)} = L_{oct(r_0)} - 20\lg(r/r_0)$$

式中: Loct (r) —点声源在预测点产生的倍频带声压级;

Loct (r0) —参考位置 ro 处的倍频带声压级;

r—预测点距声源的距离, m;

 r_0 —参考位置距声源的距离, m_i r_0 =1

综上分析,上式可简化为:

$$L_{oct(r)} = L_{oct(r_0)} - 20\lg(r)$$

5.4.3 项目噪声影响预测分析

本项目的大多数生产设备均设置在厂房内,其噪声经墙体的阻隔,到达厂区的边界时噪声值能得到有效地衰减。根据本项目各主要设备声源在厂区内的位置及拟采取的减震、隔声、消声措施,建筑物外噪声评价标准采用《工业企业厂界环境噪声排放标准》(GB3096-2008)中的4类标准,本项目噪声的影响预测结果详见下表。

表5.4-1 工业企业噪声源强调查清单(室内声源)

建筑物	生产车	空间	相对位置	/m	± >▼ た た	设备数	声源源强	+ XZ b> 4-1 + b > 4-	降噪后最大噪	> -	建筑物插入	建筑物]外噪声																											
名称	间	X	Y	Z	- 声源名称	量/台	声功率级/dB(A)		声值/dB(A)	运行段	损失/dB(A)	声压级/dB(A)	建筑物外距离																											
					带锯	1	85		80																															
					截料锯	5	85		80																															
					下轴纵锯机	5	85		80																															
					平刨	2	85		80																															
					双面刨	2	85		80																															
					四面刨		80																																	
					梳齿机	1	75		70																															
					齿接机	1	75		70																															
					推台锯	2	85		80																															
					直线修边机	2	75		70																															
					摩天轮拼板机	4	75		70																															
					模块四面拼板机	1	75		70																															
					定厚砂光机	2	85		80		Lean																													
	1F 木加				刨砂机	1	85	选用低噪设	80																															
	工车间	40	-18	3 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	砂光机	1	85	 备、减震	80	生产时段	30	65.31	1												
					空压机	2	85	H (797/R	80																															
厂房二																																					锯床 1 85 80			
, ,,,,														开料机	2	85		80																						
					铣床	2	75		70																															
					钻床	1	75		70																															
					钻孔攻丝机	3	75		70																															
					冲床	2	85		80																															
					拉丝机	1	75		70																															
					砂轮机(磨钻头用)	1	85		80																															
					加工中心	2	75		70																															
					车床	2	75		70																															
					线切割机	4	80		75																															
					焊机 次 压机	5	75		70																															
					冷压机	2	75		70																															
				1	窜动砂带机 立式单轴锣机	2	85	-	80																															
	2F 开料	40	10	11		5	80 75	选用低噪设	75 70	化 宏明 印	30	63.87	1																											
	车间	40	-18	11	加工中心 地锣	5	75 80	——— 备、减震	75	生产时段	30	03.87	1																											
						1	80 80		75 75																															
				l	底贯机	1	80		/3																															

建筑物	生产车	空间	相对位置	/m	士)际 5.1 6	设备数	声源源强	= > > + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	降噪后最大噪)=- 4=- 12TL	建筑物插入	建筑物	 外噪声
名称	间	X	Y	Z	声源名称	量/台	声功率级/dB(A)	声源控制措施	声值/dB(A)	运行段		声压级/dB(A)	建筑物外距离
					吊锣	5	80		75				
					仿型机	1	75		70				
					砂光机	2	85		80				
					砂带机	2	85		80				
					气鼓砂光机	2	85		80				
					数控斜接机	1	75		70				
					数控车床	1	75		70				
					数控出榫机	2	75		70				
					数控榫头机	2	75		70				
					数控榫槽机	2	75		70				
					榫眼机	2	75		70				
					数控燕尾榫机	2	75		70				
					数控加工中心	1	75		70				
					铣型机	1	75		70				
					四轴数控	1	75		70				
					台钻	10	75		70				
					木工铣床	2	75		70				
					推台锯	6	85		80				
					出榫机	5	75		70				
					小五轴加工中心	2	75		70				
					斜榫机	3	75		70				
					圆棒单砂机	1	85		80				
	3F 木磨 车间	40	-18	16	手磨机	10	80	选用低噪设 备、减震	75	生产时段	30	55.00	1
					手磨机	6	80		75				
					底漆调漆房	1	75		70				
					面漆调漆房	1	75		70				
					底漆房	1	75		70				
	40 8克沙木				底漆房喷枪	1	75)	70				
•	4F 喷漆	40	-18	22	底漆房水帘柜	1	75	- 选用低噪设 タ *****	70	生产时段	30	58.67	1
	车间				底漆烘干房	1	75	- 备、减震	70				
					面漆房	1	75	7	70				
					面漆房喷枪	1	75	1	70				
					面漆房水帘柜	1	75	7	70				
					面漆烘干房	1	75		70				

建筑物	生产车	空间		/m	去海白布	设备数	声源源强	= 3/45 4-2-2-1-1-1-1-2-4-1-1-1-1-1-1-1-1-1-1-1-	降噪后最大噪	>=	建筑物插入	建筑物]外噪声
名称	间	X	Y	Z	声源名称	量/台	声功率级/dB(A)	声源控制措施	声值/dB(A)	运行段	损失/dB(A)	声压级/dB(A)	建筑物外距离
					UV 底漆喷涂线	1	75		70				
					UV 面漆喷涂线	1	75		70				
					带锯	1	85		80				
					平刨	1	85		80				
					推台锯	1	85		80				
					台式钻床	1	75		70				
					台锣	1	80		75				
					切割机	1	80		75				
					截断机	3	65		60				
					搅拌储棉箱	1	70		65				
					吸棉充棉机	1	70		65				
	5F 4/r				衣车	14	65		60				
	5F 软				平车	4	65		60				
	体、皮	40	-18	28	同步车	14	65		60				
	具车间				大线车	1	65		60				
					锁边机	2	65		60				
					双针大绒机	1	65		60				
					平板缝纫机	1	65		60				
					平缝双针机	1	65		60				
					测皮机	1	65		60				
					量布机	1	65		60				
					真皮冲孔机	1	65		60				
					电脑车	1	65		60				
					高周波机	1	65		60				
					铲皮机	1	65		60				
					带锯	1	85	4	80				
					截料锯	5	85	4	80				
					下轴纵锯机	5	85	4	80				
					平刨	2	85		80				
厂房三	1F 木加 丁车间	37	35	2	双面刨	2	85	选用低噪设	80	生产时段	30	65.19	1
	工车间				四面刨	1	85	备、减震	80	, , ,	-		
					梳齿机	1	75	-	70				
					齿接机	1	75		70				
					推台锯	2	85		80				
					直线修边机	2	75	<u> </u>	70				

建筑物	生产车	空间	相对位置	/m	声源名称	设备数	声源源强	声源控制措施	降噪后最大噪	运行段	建筑物插入	建筑物]外噪声
名称	间	X	Y	Z] 产源名称	量/台	声功率级/dB(A)	产源控制指施	声值/dB(A)	运11权	损失/dB(A)	声压级/dB(A)	建筑物外距离
					摩天轮拼板机	4	75		70				
					模块四面拼板机	1	75		70				
					定厚砂光机	2	85		80				
					刨砂机	1	85		80				
					砂光机	1	85		80				
					空压机	2	85		80				
					锯床	1	85		80				
					开料机	2	70		65				
					铣床	2	75		70				
					钻床	1	75	_	70				
					钻孔攻丝机	3	75	_	70				
					冲床	2	85		80				
					拉丝机	1	75	_	70				
					砂轮机(磨钻头用)	1	85		80				
					湿式一体抛光机	1	85		80				
					CNC	2	75	_	70				
					车床	2	75	_	70				
					线切割机	4	80		75 - 2				
					焊机	5	75	_	70	_			
					冷压机	2	75		70				
					窜动砂带机	2	85	1	80				
					立式单轴锣机	5	80	-	75				
					加工中心	4	75	1	70				
					地锣	5	80	_	75 7.5				
					底贯机	1	80	-	75 75				
					吊锣 佐刑却	5	80	-					
	2F 开料	37	25	1.1	<u> </u>	2	75 85	选用低噪设	70 80	生产时段	30	(2.95	1
	车间	37	35	11	砂光机 砂带机		85 85	备、减震		生广时权	30	63.85	1
						2 2	85 85	-	80 80				
					气鼓砂光机	+		-					
			1	1	数控斜接机 数控车床	1	75 75	-	70 70				
			1	1	数控出榫机	2	75	-	70				
			1	1	数控出件机 数控榫头机	2	75		70				
						2	75 75		70				
					数控榫槽机	2	/5		/0				

建筑物	生产车	空间	1相对位置	∄/m	主源 5 46	设备数	声源源强	声源控制措施	降噪后最大噪	二年前	建筑物插入	建筑物	7外噪声
名称	间	X	Y	Z	声源名称	量/台	声功率级/dB(A)	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	声值/dB(A)	运行段	损失/dB(A)	声压级/dB(A)	建筑物外距离
					榫眼机	2	75		70				
					数控燕尾榫机	2	75		70				
					数控加工中心	1	75		70				
					铣型机	1	75		70				
					四轴数控	1	75		70				
					台钻	10	75		70				
					木工铣床	2	75		70				
					推台锯	6	85		80				
					出榫机	5	75		70				
					小五轴加工中心	2	75		70				
					斜榫机	3	75		70				
					圆棒单砂机	1	85		80				
	3F 木磨 车间	37	35	16	手磨机	10	80	选用低噪设 备、减震	75	生产时段	30	55.00	1
					手磨机	6	80		75				
					底漆调漆房	1	75		70				
					面漆调漆房	1	75	选用低噪设 - 	70				
					底漆房	2	75		70				
	4F 喷漆	37			底漆房喷枪	3	75		70				
	车间		35	22	底漆房水帘柜	2	75		70	生产时段	30	55.91	1
	十四				底漆烘干房	1	75		70				
					面漆房	3	75		70				
					面漆房喷枪	3	75		70				
					面漆房水帘柜	3	75		70				
					面漆烘干房	1	75		70				
					带锯	1	85		80				
					平刨	1	85		80				
					推台锯	1	85		80				
	5F 软				台式钻床	1	75		70				
	体、皮	37	35	28	台锣	1	80	选用低噪设	75	生产时段	30	56.30	1
	具车间	υ,			切割机	1	80	备、减震	75	1 110		00.00	-
					截断机	3	65		60				
					搅拌储棉箱	1	70		65				
					吸棉充棉机	1	70		65	i			
					衣车	14	65		60				

建筑物	生产车	空间	1相对位置	/m	主源 5 4 5 6	设备数	声源源强	主流系统系统	降噪后最大噪)= 4= ET.	建筑物插入	建筑物]外噪声
名称	间	X	Y	Z	- 声源名称	量/台	声功率级/dB(A)		声值/dB(A)	运行段			建筑物外距离
	-				平车	4	65		60				
					同步车	14	65		60				
					大线车	1	65		60				
					锁边机	2	65		60				
					双针大绒机	1	65		60				
					平板缝纫机	1	65		60				
					平缝双针机	1	65		60				
					测皮机	1	65		60				
					量布机	1	65		60				
					真皮冲孔机	1	65		60				
					电脑车	1	65		60				
					高周波机	1	65		60				
					铲皮机	1	65		60				
					锯床	1	85		80				
					开料机	2	70		65				
					铣床	2	75		70				
					钻床	1	75		70				
					钻孔攻丝机	3	75	选用低噪设	70				
	1F 机加	-67	5	2	冲床	2	85		80	生产时段	30	58.41	1
	工车间			2	拉丝机	1	75	备、减震	70] 生/ 四权 30	30.41	1	
					砂轮机(磨钻头用)	1	85		80				
					CNC	2	75		70				
					车床	2	75		70				
厂房四					线切割机	4	80		75				
7 77 12					焊机	5	75		70				
					带锯	1	85		80				
					平刨	1	85		80				
					推台锯	1	85		80				
					台式钻床	1	75		70				
	2F 软体	-67	5	11	台锣	1	80	选用低噪设	75	生产时段	30	56.12	1
	车间	5,		**	切割机	1	80	备、减震	75			20.12	•
					截断机	1	65		60				
1					搅拌储棉箱	1	70		65				
					吸棉充棉机	1	70		65				
					衣车	2	65		60				

建筑物	生产车	空间	1相对位1	∄/m	去源 5 5 6	设备数	声源源强	声源控制措施	降噪后最大噪	运行段	建筑物插入	建筑物	外噪声
名称	间	X	Y	Z	声源名称	量/台	声功率级/dB(A)	产源控制有施	声值/dB(A)	运行权	损失/dB(A)	声压级/dB(A)	建筑物外距离
					平车	4	65		60				
					同步车	14	65		60				
					大线车	1	65		60				
					锁边机	2	65		60				
					双针大绒机	1	65		60				
					平板缝纫机	1	65		60				
					平缝双针机	1	65		60				
					测皮机	1	65		60				
					量布机	1	65		60				
					真皮冲孔机	1	65		60				
					带锯	1	85		80				
					平刨	1	85		80				
					推台锯	1	85		80				
					台式钻床	1	75		70				
					台锣	1	80		75				
					切割机	1	80		75				
					截断机	1	65		60				
					搅拌储棉箱	1	70		65	1			
					吸棉充棉机	1	70		65				
-	3F 软体	-67	5	16	衣车	2	65	选用低噪设	60	生产时段	30	56.12	1
	车间	-07		10	平车	4	65	备、减震	60	工/ 円板	30	30.12	1
					同步车	14	65		60				
					大线车	1	65		60				
					锁边机	2	65		60				
					双针大绒机	1	65		60				
					平板缝纫机	1	65		60				
					平缝双针机	1	65	1	60				
					测皮机	1	65		60				
					量布机	1	65	1	60				
					真皮冲孔机	1	65 ロ》 〈 京 な */- * * ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		60				上 云 ロ ハ ユ

备注:本项目墙体主要为单层墙,根据《噪声污染控制工程》(高等教育出版社,洪宗辉)中资料,单层墙实测的隔声量为 49dB(A),本项目为洁净车间,实际隔声量可达 30dB 左右。

表5.4-2 工业企业噪声源强调查清单(室外声源)

厂房	声源名称	数量		空间相对位置/m	1	声源源强	声源控制措施	降噪后最大噪声	叠加值	运行时段
) <i>I</i> FI	产级石物	/台	X	Y	Z	声功率级/dB(A)	产源汽车则111.00	值/dB(A)	/dB(A)	色11时权
	G1 排气筒废气处理设施	1	91	-22	38	90	设置隔声罩	65		生产时段
	G2 排气筒废气处理设施	1	12	-34	11	90	设置隔声罩	65		生产时段
	G3 排气筒废气处理设施	1	23	-34	22	90	设置隔声罩	65		生产时段
厂房二	G4 排气筒废气处理设施	1	43	-34	38	90	设置隔声罩	65	73.45	生产时段
	G5 排气筒废气处理设施		79	-34	16	90	设置隔声罩	65	-	生产时段
	G6 排气筒废气处理设施	1	90	-34	2	90	设置隔声罩	65		生产时段
	G13 排气筒废气处理设施	1	82	-22	38	90	设置隔声罩	65		生产时段
	G7 排气筒废气处理设施	1	26	47	38	90	设置隔声罩	65		生产时段
	G8 排气筒废气处理设施	1	5	21	11	90	设置隔声罩	65	-	生产时段
厂房三	G9 排气筒废气处理设施	1	19	21	22	90	设置隔声罩	65	70.70	生产时段
) 厉二	G10 排气筒废气处理设施	1	26	53	38	90	设置隔声罩	65	72.78	生产时段
	G11 排气筒废气处理设施	1	77	21	16	90	设置隔声罩	65	1	生产时段
	G12 排气筒废气处理设施	1	85	21	2	90	设置隔声罩	65	1	生产时段
厂房四	G14 排气筒废气处理设施	1	83	-7	38	90	设置隔声罩	65	65.00	生产时段

风机外安装隔声罩,下方加装减振垫,配置消音箱,隔声量不小于 25 dB(A)。

表5.4-3 项目各厂房噪声源情况一览表

	噪声源	考虑墙体隔声后车间外声压值 dB(A)					
厂房二	1~5F	68.38					
厂房三	1~5F	68.36					
厂房四	1~3F	61.80					

采用噪声环境影响评价系统(Noise System)进行预测,预测结果见下表。

表5.4-4 采取降噪措施及考虑墙体隔声情况下厂界噪声预测贡献值(昼间)

单位: dB(A)

生产区	—————————————————————————————————————	与厂界距离	厂界外1米	贡献值	背景值	叠加预测值	
域	· 宋 广 · 你	m	值	火脈阻	月泉沮	11111111111111111111111111111111111111	
	厂房二	10	48.38				
	厂房二风机	62	37.60				
东面厂	厂房三	10	48.36	51.71	64	64.25	
界	厂房三风机	62	36.93	31.71	04	04.23	
	厂房四	138	19.00				
	厂房四风机	165	20.65				
	厂房二	62	32.53				
	厂房二风机	88	34.56				
南面厂	厂房三	113	27.30	38.27	61	61.02	
界	厂房三风机	140	29.86	36.27	01		
	厂房四	73	24.53				
	厂房四风机	106	24.49				
	厂房二	85	29.79				
	厂房二风机	141	30.47			64.04	
西面厂	厂房三	85	29.78	43.24	64		
界	厂房三风机	141	29.80	43.24	04	04.04	
	厂房四	10	41.80				
	厂房四风机	40	32.96				
	厂房二	105	27.96				
	厂房二风机	123	31.65				
北面厂	厂房三	53	33.88	39.56	63	62.02	
界	厂房三风机	70	35.88	37.30	0.5	63.02	
	厂房四	71	24.77				
	厂房四风机	96	25.35				

从预测结果可知,项目运营期间,设备采取降噪措施后,项目厂界噪声排放达到《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准。

表5.4-5 声环境影响评价自查表

工	作内容		自査项目						
评价等级	评价等级	一级□	二级	□ 三级☑					
与范围	评价范围	200 m☑	大于 200 m	m□ 小于 200 m□					
评价因子	评价因子	等效连续A声级☑	最大A声级□	计权等效连续感觉噪声级□					

广东阅生活家居科技有限公司广东阅生活总部基地建设项目环境影响报告书

I.	作内容				É	自查项目				
评价标准	评价标准	Ξ	国家标	准团	坩	也方标准□		国	外标准□	
	环境功能区	0类区□	1类	Zп	2类区口	3类区☑	4a 类区□		4b 类区□	
现状评价	评价年度	初期□			近期□	□ 远期□				
PUNCT DI	现状调查方法	现均	多实测	法团	现场实测	加模型计算	法口	收集	资料□	
	现状评价	达标百分			七			100%	1	
噪声源 调	噪声源调查方	Ŧ	见场实	· ЛПГ	□ #	「资料□	石	F 究成	里 □	
查	法	با	光奶头	1火リロ	L-17 .	1 贝 们 1	11)	176/1842	⊼ ⊔	
	预测模型		导则	推荐	莫型☑		其他□			
	预测范围	200) m☑		大于20	00 m□	,	小于20	0 m□	
声环境影	预测因子	等效连	续A声	≒级☑	最大A声	级口 计权等	等效连续	续感觉	噪声级□	
响预测与	厂界噪声贡献				达标☑	不达标。	7			
评价	值				及你也	7 KZ 1/N L				
	声环境保护目			ì	 达标 ☑	不达	·#==			
	标处噪声值			,		11亿	7/7/1			
环境监测计	排放监测	厂界出	並测 図	固定	位置监测□	自动监测□	手动监测□ 无监测□			
划	声环境保护目	监测因-	子. ()	监测点	位数()		无山	左测☑	
XI)	标处噪声监测	皿视口	1: (,	皿 1火1 示	四级()		/65	11.1火引 🛂	
评价结论	环境影响				可行☑	不可行□	1		_	
注: "□" 为々	注:"□"为勾选项 , 可 √ ; "()" 为内容填写项。									

5.5 运营期固废环境影响评价

5.5.1 本项目固废产生情况

本项目产生的固体废物主要包括危险废物、一般工业固体废物、生活垃圾。危险废物主要为废化学品包装桶、废抹布手套、废漆渣、废过滤棉、废活性炭、废润滑油和废润滑油桶、废催化剂、废沸石等;一般工业固体废物主要为木边角料、布袋收集的粉尘、喷淋沉渣(金属粉尘)、地面清扫粉尘、一般原料废包装物、布料、真皮边角料、废布袋;生活垃圾主要为员工办公生活垃圾及餐厨垃圾。

5.5.2 固废处理措施分析

5.5.2.1 危险废物

本项目危险废物主要有:废化学品包装桶、废抹布手套、废漆渣、废过滤棉、废活性炭、废润滑油和废润滑油桶、废催化剂、废沸石等。建设单位应加强危险废物的管理,必须交由有资质的危险废物处理处置中心进行安全处置,对废物的产生、利用、收集、运输、贮存、处置等环节都要有追踪的账目和手续,由专用运输工具运至有资质的单位进行焚烧或无害化处置,使本项目固体废弃物由产生至无害化的整个过程都得到控制,保证每个环节均对环境不产生污染危害。

(1) 危险废物的收集包装

- 1)有符合要求的包装容器、收集人员的个人防护设备。采取分类收集的方式,暂存于危废暂存间内。
- 2) 危险废物的收集容器应在醒目位置贴有危险废物标签,在收集场所醒目的地方设置危险废物警告标识。
- 3) 危险废物标签应标明以下信息:主要化学成分或危险废物名称、数量、物理形态、危险类别、安全措施以及危险废物产生单位名称、地址、联系人及电话。

(2) 危险废物收集要求

项目危险废物产生后,首先应进行规范地收集,确保危险废物得到有效地收集,具体要求如下:

- 1)应根据收集设备、转运车辆以及现场人员等实际情况确定相应作业区域,同时要设置作业界限标志和警示牌。
 - 2) 作业区域内应设置危险废物收集专用通道和人员避险通道。

- 3) 收集时应配备必要的收集工具和包装物,以及必要的应急监测设备及应急装备。
- 4) 收集过程中应规范填写记录表,并将记录表作为危险废物管理的重要档案妥善保存。
 - 5) 收集结束后应清理和恢复收集作业区域,确保作业区域环境整洁安全。
- 6) 收集过危险废物的容器、设备、设施、场所及其他物品转作他用时,应消除污染,确保其使用安全。
- 7)危险废物内部转运应综合考虑厂区的实际情况确定转运路线,尽量避开办公区和生活区。
- 8) 危险废物内部转运作业应采用专用的工具,危险废物内部转运应规范填写好相应的转运记录表。
- 9) 危险废物内部转运结束后,应对转运路线进行检查和清理,确保无危险废物遗失在转运路线上,并对转运工具进行清洗。

(2) 危险废物贮存场所环境影响分析

- 1)本项目场地地形简单,岩土层结构变化不大,场地及附近无滑坡、岩溶、活动断裂等不良地质作用,场地的稳定性较好。危险废物暂存室设于项目厂房三车间,具有防风、防雨、防晒的条件,远离生活区,车间内均为混凝土地面,并做好相应的防渗防漏处理。危险废物暂存室内做好分区,不相容的危险废物分区堆放,并设有挡墙。项目危险废物暂存间按照相应规范建设,具有可行性。
- 2)项目危险废物暂存间约为 42.5m², 贮存能力为 100t, 项目所设置的危险废物暂存间的贮存能力可满足相关要求。
- 3) 危险废物贮存过程中,若管理不当引致火灾,会形成废气污染,对项目周边环境造成大气污染;若发生泄漏会对项目周边地表水造成严重污染,若发生渗漏则会对地下水、土壤造成严重的影响。因此,项目应严格地按照《危险废物贮存污染控制标准》(GB18597-2023)中的相关规范建设:
- I.对危险废物应建造专用的危险废物贮存设施。建设单位规划在项目厂房三建设专用于危险废物暂存的存放室,该存放室干燥、阴凉,可避免阳关直射危险废物。
- II.废漆渣、废润滑油、废活性炭、废过滤棉等必须装入容器内。无法装入常用容器的危险废物可用防漏胶袋等盛装。
 - III.禁止将不相容(相互反应)的危险废物在同一容器内混装。
 - IV.易爆、易燃的危险废物必须远离火种。

V.盛装危险废物的容器上必须粘贴符合本标准附录 A 所示的标签。

(3) 危险废物运输过程环境影响分析

项目危险废物暂存点设置在<u>项目厂房三</u>,具有危险货物资质运输车辆,在收取危险 废物时,一般停放在危废间门口,因此,生产工艺环节运输到贮存场所或处置设施的路 线主要为项目内部道路,项目内部运输路线不涉及环境敏感点。若在危险废物运输过程中,因意外发生散落、泄漏,建设单位应及时做好收集,防止废物外流,进一步污染周 边环境。

(4) 危险废物委托利用或者处置环境影响分析

项目内产生的危险废物类别有 HW49 其他废物、HW12 染料涂料废物、HW08 废矿物油与含矿物油废物等,建设单位必须委托由相应资质处理资格的危险废物单位落实上述危险废物的处理处置,应核实相关废物接收单位是否具有相应充足的处理能力,确保项目产生的危险废物得到合理地处理处置,减少对周边环境的影响。

只要本项目严格按照《危险废物贮存污染控制标准》(GB18597-2023)对危险废物进行收集、暂存,并委托持有《危险废物经营许可证》的单位进行无害化处理处置,采取上述措施防治后,本项目的危险废物对周围环境基本无影响。

5.5.2.2 一般工业固废

本项目的木边角料、布袋收集的粉尘、喷淋沉渣(金属粉尘)、地面清扫粉尘、一般原料废包装物、布料、真皮边角料、废布袋等为可资源化废物,应考虑回收和综合利用。建议将上述废品分类收集后交由资源回收单位回收利用。

- 一般来说,厂内产生的一般工业固体废物造成环境风险的可能性较低,但也应对其妥善处理,避免以下可能污染环境的事故发生;
- 1)一般工业固废临时堆放场所无防雨、防风、防渗措施,雨洗水淋后,污染物随 渗滤液进入土壤和地表水、地下水环境,大风时小块残次品也可造成流失,导致周围环 境污染;
 - 2) 一般工业固体废物暂存点因管理不善而造成人为流失继而污染环境:
 - 3) 贮放容器使用材质不当或发生破损,造成渗漏。

上述污染物排放如不受控制,在上述所列污染途径情况下,可能对环境的污染危害影响主要有:

1)污染水体,对人畜产生毒害作用,破坏水生环境,并进而污染地下水体;

- 2) 由于土壤污染和酸化,而对地面树木、花草的生长发育造成不良影响;
- 3)土壤受污染后,由于污染物在雨水淋滤下转移至地下水层,致使地下水(特别是潜层水)污染。

因此,必须确保上述固体废物得到妥善处置,建设单位应将项目产生的固体废物分类收集,及时处理。

按照上述方法妥善处理后,项目各项一般工业固体废物均能得到安全处置,不会对周围环境产生不良影响。

5.5.2.3 生活垃圾

生活垃圾中的成分比较复杂,包括食物垃圾、废纸、杂品、玻璃等,其中部分是可以回收利用的。生活垃圾除一部分会有异味或恶臭外,还有很大部分会在微生物和细菌的作用下发生腐烂,也成为蚊蝇滋生、病菌繁殖、老鼠肆虐的场所,因此本项目产生的生活垃圾应收集到规定的垃圾桶,不能随意丢弃至厂区周边,生活垃圾委托环卫部门每天统一清运。

5.5.3 固体废物的环境影响分析

综上所述,本项目分类收集、回收、处置固体废物的措施安全有效,去向明确。经上述"减量化、资源化、无害化"处置后,可将固废对周围环境产生的影响减少到最低限度,不会对周围环境产生明显的影响。

5.6 运营期对生态环境的影响评价

本项目对生态环境的影响主要为运营期排放的废气扩散对区域内的生态植被造成 影响,在采取有效的废气治理措施后,本项目排放的废气能够达到标准要求,并且浓度 较低,不会对区域的生态环境造成明显不利影响。

此外,本项目陆域用地不涉及自然保护区、自然遗迹、人文遗迹、风景名胜区、珍稀或濒危野生动物栖息地等陆域生态敏感目标。因此,本项目的建设和运营对陆生生态环境基本没有影响。建议建设单位在车间外侧空地上适当种植灌木、花草,既可美化景观,又可以吸收净化废气。

5.7 运营期环境风险影响评价

根据《建设项目环境风险评价技术导则》(HJ 169-2018)及《关于进一步加强环境影响评价管理防范环境风险的通知》(环发〔2012〕77号)、《关于切实加强风险防范严格环境影响评价管理的通知》(环发〔2012〕98号)的最新要求开展项目环境风险评价工作。

项目环境风险评价应以突发性事故导致的危险物质环境急性损害防控为目标,对建设项目的环境风险进行分析、预测和评估,提出环境风险预防、控制、减缓措施,明确环境风险监控及应急建议要求,为建设项目环境风险防控提供科学依据。

5.7.1 环境风险潜势初判

根据《建设项目环境风险评价技术导则》(HJ 169-2018),建设项目环境风险潜势划分为I、II、III、IV/IV+级。

根据建设项目涉及的物质和工艺系统的危险性及其所在地的环境敏感程度,结合事故情形下环境影响途径,对建设项目潜在环境危害程度进行概化分析,确定环境风险潜势,见下表。

环境敏感程度(E)	危险物质及工艺系统危险性(P)								
小児或恐住及(L) ————————————————————————————————————	极高危害(P1)	高度危害(P2)	中度危害(P3)	轻度危害 (P4)					
环境高度敏感区(E1)	IV^+	IV	III	III					
环境中度敏感区(E2)	IV	III	III	II					
环境低度敏感区(E3)	III	III	II	I					
注: IV+为极高环境风险	注: IV+为极高环境风险。								

表 5.7-1 建设项目环境风险潜势划分

其中,危险物质及工艺系统危险性(P)与危险物质数量与临界量比值(Q)、行业及生产工艺(M)有关。

危险物质及工艺系统危险性(P)的分级确定:

分析建设项目生产、使用、储存过程中涉及的有毒有害、易燃易爆物质,参见附录 B 确定危险物质的临界量。定量分析危险物质数量与临界量的比值(Q)和所属行业及 生产工艺特点(M),按附录 C 对危险物质及工艺系统危险性(P)等级进行判断。

危险物质数量与临界量比值(Q):

根据项目生产、使用、储存过程中涉及的有毒有害、易燃易爆物质,对照附录 B 确定危险物质的临界量。计算所涉及的每种危险物质在厂界内的最大存在总量与其在附录 B 中对应临界量的比值 Q。在不同厂区的同一种物质,按其在厂界内的最大存在总量计算。

当只涉及一种危险物质时,计算该物质的总量与其临界量比值,即为Q; 当存在多种危险物质时,则按以下公式计算物质总量与其临界量比值(Q):

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \cdots + \frac{q_n}{Q_n}$$

式中: q1, q2, ..., qn——每种危险物质的最大存在总量, t;

 Q_1 , Q_2 , ..., Q_n ——每种危险物质的临界量, t。

当 Q<1 时,该项目环境风险潜势为 I。

当 Q≥1 时,将 Q 值划分为: (1) 1≤Q<10; (2) 10≤Q<100; (3) Q≥100。

本项目产品为木质家具及装饰材料,产品无环境风险。

本项目原辅材料包括油性底漆、油性面漆、UV 底漆、UV 面漆、油性漆固化剂、油性漆稀释剂、UV 漆稀释剂、异丙醇等,其原料组成成分及理化性质见表 3.1-7。根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 B 重点关注的危险物质及临界量,参考《危险化学品目录》(2022 调整版)、国家首批和第二批重点监管危险化学品名录、《危险化学品分类信息表》以及项目原辅材料成分及理化性质,项目物质风险识别结果见表 5.7-2。

根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 B,项目使用的油性底漆(含二甲苯)、油性面漆(含二甲苯)、油性漆固化剂(含异氰酸酯单体)、油性漆稀释剂(含二甲苯)、UV 漆稀释剂(含乙酸乙酯)、异丙醇、润滑油、废润滑油属于突发环境事件风险物质。各种物质按照比例折算成纯物质后储存量和临界量如表 5.7-3 示。

根据表 5.7-3 可知,项目 Q=0.15412<1。根据 HJ169-2018,项目风险潜势直接判定为 I,开展简单分析。

表 5.7-2 物质风险识别表

原辅材 料名称	组分名称	别名	CAS号	危化品序 号	危险性类别	是否为危 险化学品	是否为风 险物质	组分含 量%	组分最大 含量%
	醇酸树脂	/	63148-69-6	/	/	×	×	40~60	60
	滑石粉	水合硅酸镁超 细粉	14807-96-6	/	/	×	×	10~25	25
	硬脂酸锌粉	十八酸锌	557-05-1	/	/	×	×	1~5	5
油性底	二甲苯	二甲苯异构体 混合物	1330-20-7	358	易燃液体,类别3;皮肤腐蚀/刺激,类别2; 危害水生环境-急性危害,类别2	V	V	10~15	15
漆	丙二醇甲醚醋酸酯	乙酸-1-甲氧基 -2-丙基酯	108-65-6	/	易燃液体,类别3	×	×	0~5	5
	乙酸丁酯	乙酸正丁酯	123-86-4	2657	易燃液体,类别3;特异性靶器官毒性-一次接触,类别3(麻醉效应)	V	×	1~5	5
	环己酮	/	108-94-1	952	易燃液体,类别3	$\sqrt{}$	$\sqrt{}$	0~2	2
	助剂	/	/	/	/	×	×	0~5	5
	醇酸树脂	/	63148-69-6	/	/	×	×	50~65	65
油性面	二甲苯	二甲苯异构体 混合物	1330-20-7	358	易燃液体,类别3;皮肤腐蚀/刺激,类别2; 危害水生环境-急性危害,类别2	$\sqrt{}$	$\sqrt{}$	10~20	20
本性画	消光粉	二氧化硅	7631-86-9	/	/	×	×	1~6	6
徐	蜡粉	聚乙烯	9002-88-4	/	/	×	×	0~2	2
	 丙二醇甲醚醋酸酯 	乙酸-1-甲氧基 -2-丙基酯	108-65-6	/	易燃液体,类别 3	×	×	0~15	15
	环氧丙烯酸树脂	/	54847-34-6	/	/	×	×	70~80	80
UV底 漆	二丙二醇二丙烯酸 酯	LA;丙烯酸月 桂酯;丙烯酸十 二酯;DPGDA	57472-68-1	/	皮肤腐蚀/刺激,类别 2;皮肤致敏,类别 1; 严重眼损伤/眼刺激,类别 1	×	×	10~20	20
	光引发剂	/	/	/	/	×	×	4~8	8
	丙烯酸酯化树脂	/	/	/	/	×	×	5~40	40
UV面 漆	丙烯酸酯化单体	二缩三丙二醇 双丙烯酸酯	42978-66-5	/	皮肤腐蚀/刺激,类别2;皮肤致敏,类别1; 严重眼损伤/眼刺激,类别2A;特异性靶器 官毒性,一次接触;呼吸道刺激,类别3; 对水生环境的危害-慢性危害;类别2	×	×	5~85	85

原辅材 料名称	组分名称	别名	CAS号	危化品序 号	危险性类别	是否为危 险化学品	是否为风 险物质	组分含 量%	组分最大 含量%
	光引发剂	/	/	/	/	×	×	4~8	8
油性漆	聚氨酯固化剂	2-乙基-2-(羟甲基)-1,3-丙二醇与1,3-二异氰酸根合甲基苯和2,2'-氧二(乙醇)的聚合物	53317-61-6	/	皮肤致敏,类别1;严重眼损伤/眼刺激,类 别2	×	×	45~60	60
固化剂	乙酸丁酯	乙酸正丁酯	123-86-4	2657	易燃液体,类别3;特异性靶器官毒性-一次接触,类别3(麻醉效应)	$\sqrt{}$	×	13~20	20
	乙酸乙酯	醋酸乙酯	141-78-6	2651	易燃液体,类别2;严重眼损伤/眼刺激,类别2;特异性靶器官毒性,一次接触;麻醉效应,类别3	V	V	15~20	20
	丙二醇甲醚醋酸酯	乙酸-1-甲氧基 -2-丙基酯	108-65-6	/	易燃液体,类别 3	×	×	3~8	8
油性漆	丙二醇甲醚醋酸酯	乙酸-1-甲氧基 -2-丙基酯	108-65-6	/	易燃液体,类别 3	×	×	45~55	55
稀释剂	乙酸丁酯	乙酸正丁酯	123-86-4	2657	易燃液体,类别3;特异性靶器官毒性-一次 接触,类别3(麻醉效应)	\checkmark	×	45~55	55
UV漆	乙酸丁酯	乙酸正丁酯	123-86-4	2657	易燃液体,类别3;特异性靶器官毒性-一次 接触,类别3(麻醉效应)	V	×	50	50
稀释剂	乙酸乙酯	醋酸乙酯	141-78-6	2651	易燃液体,类别2;严重眼损伤/眼刺激,类别2;特异性靶器官毒性-一次接触,类别3(麻醉效应)	V	V	50	50
异丙醇	异丙醇	2-丙醇	67-63-0	111	易燃液体,类别2;严重眼损伤/眼刺激,类别2;特异性靶器官毒性-一次接触,类别3 (麻醉效应)	V	V	100	100
天然气	甲烷	沼气	74-82-8	1188	易燃气体,类别1;加压气体,压缩气体	$\sqrt{}$	√	100	100
润滑油	/	/	/	/	/	×	$\sqrt{}$	100	100
废润滑 油	/	/	/	/	/	×	\checkmark	100	100

表 5.7-3 项目风险物质识别表

序号	原料种类	风险物质	CAS号	储存位	储存方式	最大储存量(含仓库储	纯物质最大	折算最大储	临界量qn	Q
12.2	原科性 关	名称	CAS 5	置	储针刀丸	存量和在线量)(t/a)	占比%	存量qn(t)	(t)	(qn/Qn)
1	油性底漆	二甲苯	1330-20-7	仓库	20kg/桶	2	15	0.3	10	0.03
	1四 1工/成1本	环己酮	108-94-1	仓库	ZONGAIII	2	2	0.04	10	0.004
2	油性面漆	二甲苯	1330-20-7	仓库	20kg/桶	2	20	0.4	10	0.04
3	油性漆固化剂	乙酸乙酯	141-78-6	仓库	15kg/桶	1	20	0.2	10	0.02
4	UV漆稀释剂	乙酸乙酯	141-78-6	仓库	20kg/桶	0.8	50	0.4	10	0.04
5	异丙醇	异丙醇	67-63-0	仓库	20kg/桶	0.2	100	0.2	10	0.02
6	天然气	甲烷	74-82-8	管道	管道运输	0	100	0	10	0
7	润滑油	油类物质	/	仓库	200kg/桶	0.2	100	0.2	2500	0.00008
8	废润滑油	油类物质	/	危废间	200kg/桶	0.1	100	0.1	2500	0.00004
Q值	/	/	/	/		/	/	/	/	0.15412
合计	,	,	,	,		,	,	,	,	0.15712

备注:①最大储存量考虑危险危化仓储存量和车间在线量,其中天然气不在厂内贮存,且属于低压管网运输,其在线量忽略不计;风险物质纯物质占比为MSDS中成分比例中的最大值,再根据占比折算为纯物质的量;②各物质临界量取值来源于HJ169-2018附录B.1。

5.7.2 风险单元调查及分析

项目风险单元包括仓库、危险废物暂存间。

其风险主要来自风险物质泄漏,泄漏后风险物质直接进入市政管网进入水体,另外泄漏挥发,遇火源产生燃烧,其次生灾害为烟尘对环境瞬时影响以及消防废水可能进入水体的影响等。具体分析见表 5.7-4。

5.7.3 风险敏感目标调查

本项目风险敏感目标见表 2.6-1。最近的敏感目标为光华村,距离项目厂界约 250 米,距离最近风险源仓库约 320 米。

5.7.4 环境风险分析

本项目风险源及泄漏途径、后果分析见表 5.7-4。

表 5.7-4 风险分析内容表

事故起因	工序	环境风险描述	涉及化学品 (污 染物)	风险类别	途径及后果	风险防范措施
易燃物泄漏	催化燃烧装 置	天然气泄漏	天然气	大气环境	引起火灾爆炸,对车间局 部大气环境和厂区附近 环境造成瞬时影响	天然气由管道输送,厂区内不设置存储区;易燃 物质储存量不大,在储存区设置灭火器
火灾、爆炸	房、仓库、危 废间、有机废 气治理设施	液态物料、废润滑油等 易燃液体泄漏导致火 灾,有机废气治理设施 发生火灾爆炸。火灾爆 炸产生的燃烧烟尘及污 染物污染周围大气环 境;扑救火灾可能产生 消防废水进入附近水体	涉及的化学品: 废润滑油、液态 物料等。涉及的 污染物: CO、非 甲烷总烃、COD 等	大气环境、水环 境	燃烧烟尘及污染物通过 燃烧烟气扩散,对周围大 气环境造成短时污染;消 防废水通过雨水管对附	有机废气治理设施监控 VOCs 浓度,确保其始终保持在安全范围内,避免超过爆炸下限。确保危废间设置围堰,防止泄漏物外溢,配备泄漏吸附砂和收集桶。车间、仓库、危废间保持通风,防止泄漏物积聚。车间设置漫坡,使用车间漫坡内的区域收集消防废水。外排雨水井配备封堵材料或外排雨水口加装截止阀。
化学品泄漏	仓库	泄漏化学品通过雨水管 进入水体	液态物料	水环境	通过雨水管排放到附近 水体,影响水生环境	化学品储存在化学品仓库里,设置漫坡,控制储存量。现场配置泄漏吸附收集等应急器材,防止 泄漏物挥发以及泄漏范围扩大
水帘柜废水 泄漏	水帘柜	水帘柜废水(含漆渣) 通过雨水管进入水体	水帘柜废水(含 漆渣)	水环境	通过雨水管排放到附近 水体,影响水生环境	设置集水槽、导流沟,防止废水外溢。现场配置 吸油棉、围油栏等应急器材,以便快速响应泄漏 事件
危险废物泄 漏	危险废物暂 存间	危废泄漏,可能污染地 表水及地下水	废润滑油等	水环境	通过雨水管排放到附近 水体,影响水生环境	危险废物暂存间设置围堰,做好防渗措施,
废气事故排 放		废气处理设施故障,导 致废气未经处理直接通 过排气筒或车间排放至 大气中	括二甲苯)、颗	大气环境	对周围大气环境造成影 响	加强对废气处理设施的监控

5.7.5 风险影响分析

5.7.5.1水环境风险分析

(1) 泄漏事故外排化学品对水体的影响分析

根据前面源项分析,化学品仓库及生产车间物料的泄漏均会对水体产生影响。化学品仓库设置下沉式收集管渠和收集池,危险废物储存场所按规范采取硬底化处理以及遮雨措施,发生泄漏事故后,泄漏进入雨水管排入内河涌的可能性极少。

(2) 火灾时消防水外排的影响

当发生火灾时,消防废水可能携带有毒有害化学品,消防废水可通过雨水井进入雨水管网,进而进入自然水体,导致水体污染。

项目利用管网和应急泵将泄漏物和消防废水泵入事故应急池暂存,避免泄漏物料从雨水或清净下水管网直接进入外环境。在厂内预先准备适量的沙包,防止消防废水向厂外泄漏,事故应急池排水方式为强排水(不使用强制排放泵时废水不会主动外排),事故产生的废水可暂存在厂区内,事故废水收集后交给有处理能力的单位处理。

(3) 生产废水泄漏

生产废水泄漏会危害人体健康,并对水体造成污染。事故发生时,应立即停止生产 并检查水帘柜设备;出现大量泄漏时,应及时封堵截流废水,并对雨水排放口进行封堵。 在加强管理和采取措施情况下其风险是可控的。

通过上述事故防范措施,本项目无论是泄漏还是火灾事故,一般情况下都不会有污染物排入周边水体环境,事故状态下废水也不会进入水源保护区,因此本项目对周边水环境的风险是可控的。

5.7.5.2大气环境风险分析

根据《环境应急响应使用手册》及《北美应急响应手册》,对企业生产涉及的环境风险物质,对于可能造成大气污染的突发环境事件,依据风向、风速分析环境风险物质少量泄漏和大量泄漏情况下,白天和夜间可能影响的范围,包括事故发生点周边的紧急疏散距离、事故发生地下风向人员防护距离。

事故发生四周的疏散区,以事故发生地为圆心:事故区疏散为半径圆,是非事故处理人员不得入内,应指挥所有人员向逆风方向撤离至该区域以外。人员防护区是在事故区顺风以下,以人员防护最低距离为顺风向的矩形区域,在该区域应采取保护性措施,即该范围内的人员处于有害接触的危险之中,应采取撤离、密闭住所窗户,关闭通风、

换气、空调等有效措施,并保持通信畅通以听从指挥。由于夜间气象条件原因,顺风向距离应比白天的远。夜间和白天的区分可以太阳升起和降落为主。

参考《北美应急响应手册》、《首批重点监管的危险化学品安全措施和应急处置原则》对企业生产涉及的环境风险物质,进行泄漏时的大气污染情景分析白天和夜间可能 影响的范围。

环境风险物		少量泄漏		大量泄漏			
质名称	紧急疏散 (m)	白天防护 (km)	夜间防护 (km)	紧急疏散 (m)	白天防护 (km)	夜间防护 (km)	
天然气	100			800			

表 5.7-5 大气污染情景影响范围表

企业生产涉及的环境风险物质天然气属于《北美应急响应手册》列有事故后事故隔 离和人员防护最低距离的 200 余种化学物质,其余环境风险物质未列明。建议发生环境 风险物质泄漏时,企业应结合事故现场的实际情况如泄漏量、泄漏压力、泄漏形成的释 放区域面积、周围建筑或树木情况以及当时风速,并可参考表中的数据,修正事故疏散 和人员防护距离。

企业已按规范布局设置固定的可燃气体探测器,进行连续探测,实现可燃气体泄漏的探测及报警。可燃气体探测器采用固定式探头;车间配备各种消防器材。发生泄漏事故时,通过采取切断污染源、隔离事故现场和人员疏散等方式,迁扩建后项目大气环境风险总体可控。

综合以上分析,项目大气环境风险总体可控。

5.7.5.3危险废物事故对环境的影响分析

项目在生产经营过程中会产生危险废物。危险废物储存场所按规范采取硬底化处理 以及遮雨措施。收集的危险废物均委托有资质单位专门收运和处置。因此发生泄漏对环境产生污染的可能性不大,其风险可控。

5.7.5.4环保设施失效

项目生产废气的处理设施失效,可能造成废气未经处理直接排放,造成事故排放,危害人体健康及对空气造成污染。发生事故时,应立即停止生产并检查废气处理设施,在加强管理和采取措施情况下风险是可控的。

综合以上分析,项目发生事故后外排液态原辅材料、废水和消防废水的可能性极小,通过采取风险控制改进措施和应急响应,其环境风险是可控的。泄漏化学品和火灾爆炸

事故烟尘对周围大气环境的影响较小,危险废物暂存场所风险可控。环保设施失效,立即停止生产,在加强管理和采取措施情况下风险是可控的。

5.7.6 环境风险管理

企业将建立安全环境管理专项制度,落实突发环境事件风险控制措施,具体包括以下措施:

1) 防止泄漏的控制措施

项目防止液态物料等化学品泄漏的控制措施见表 5.7-4。

2) 危险废物暂存间风险控制措施

应对危险废物进行科学分类。对各类的危险废物,需要采用专用的容器,明确各类 废弃物标识,分类包装与存放,并及时收集交有资质单位代为处理。

项目危险废物暂存间严格按照国家相关标准和规范建设,暂存间采用独立加盖包装桶密封存放,暂存间硬底化。暂存间设置有强制通排风装置,确保通风良好。配备有消防器材,个人防护用品等。

3) 防止污水事故排放的应急措施

项目事故废水产生量核算:

参照《事故状态下水体污染的预防和控制技术要求》(Q/SY08190-2019),消防废水容积按下式计算:

$$V_{\text{$\#$ab}\text{$hb}} = (V_1 + V_2 - V3)_{\text{max}} + V4 + V5$$

式中: $(V_1+V_2-V_3)$ max ——为事故废水最大计算量, m $\frac{3}{4}$

- 2) V₂——在装置区一旦发生火灾爆炸及泄漏时的最大消防水量。根据《消防给水及消防栓系统技术规范》(GB50974-2014)有关规定,各建筑物的消防用水量和消防废水量计算见表 5.7-6。

风险单	占地面 积(m²)	建筑高度 (m)	建筑体积 (m³)	建筑级别	耐火等级	室外消防 水量(L/s)	室内消防 水量 (L/s)	火灾时 间(h)	室外消防 废水量 (m³)	室内消防 废水量 (m³)	消防废水 量合计 (m³)
厂房一	3132	37.65	117919.8	丙类	二级	40	30	3	432	324	756
厂房二	3898	37.65	146759.7	丙类	二级	40	30	3	432	324	756
厂房三	3795	37.65	142881.75	丙类	二级	40	30	3	432	324	756

表 5.7-6 厂区各建筑物消防用水量计算汇总表

风险单元	占地面 积(m²)	建筑高度 (m)	建筑体积 (m³)	建筑级别	耐火等级	室外消防 水量(L/s)	室内消防 水量 (L/s)	火灾时 间(h)	室外消防 废水量 (m³)	室内消防 废水量 (m³)	消防废水 量合计 (m³)
厂房四	2742	37.65	103236.3	丙类	二级	40	30	3	432	324	756
宿舍大 楼	1325	39.65	52536.25	民用 建筑	二级	40	15	3	432	162	594
综合办 公楼	1333	49.55	66050.15	民用 建筑	二级	40	15	3	432	162	594
展馆	1188	11.85	14077.8	丙类	二级	25	20	3	270	216	486

根据不同分区计算结果取最大值作为 V_2 值,因此 $V_2=756$ m³。

- 3) V_3 ——事故废水收集系统的装置或厂区围堰、防火堤内净空容量(m 3) 与事故废水导排管道容量(m 3) 之和。项目没有可以转输到其他储存或处理设施的物料量,故 $V_3=0m^3$ 。
- 4) V_4 ——发生事故时仍必须进入该收集系统的生产废水量;项目发生事故时立即停止生产,水帘柜和喷淋塔废水可暂存在循环水池中,故 V_4 =0m³。
- 5) V_5 ——发生事故时可能进入该收集系统的降雨量, V_5 = $10 \times q \times F$,q 为降雨强度 (mm),按平均日降雨量计算(q=qa/n,qa 为当地多年平均降雨量,n 为年平均降雨日数),F 为必须进入事故废水收集系统的雨水汇水面积(hm^2)。

顺德区多年平均降雨量 1789.41mm, 年平均降雨日数为 145 天,事故发生持续时间为 24 h,项目厂区有效集水面积约 43231.6m²,根据《室外排水设计标准》(GB50014-2021),屋面、混凝土径流系数取值为 0.85~0.95,本项目根据实际情况取值为 0.85。根据公式计算可知,发生事故时可能进入该收集系统的降雨量 V₅=453.48m³。

计算得出应收集的消防废水总容积=(0.2+756-0)+0+453.48=1209.68m3

6) 收集措施及有效性分析

项目设有地下停车场,占地面积为 5770m², 高 3.8m, 可用于收集事故废水 (利用 应急泵泵入),同时在雨水排放口与厂区门口设置截断措施 (堵气袋、截止阀、沙包等)。综上所述,本项目实施后,消防废水收集措施是可行的。

建立三级防控体系:

- 一级:原材料仓库、危废仓设置围堰,防止泄漏液体和事故废水流入下水道。项目在雨水总排放口设置雨水截止阀,发生事故时,关闭雨水截止阀。
- 二级:厂区内各建筑物周边设置有雨水收集管道,雨水管与市政管道相连,并建有雨水截止阀,正常情况下雨水收集管道与市政雨水管的阀门开启,当发生火灾时,立即启动应急响应程序,将雨水收集管道与市政雨水管的阀门关闭,利用管网和应急泵将泄漏物和消防废水泵入事故应急池暂存,避免泄漏物料从雨水或清净下水管网直接进入外

环境。在厂内预先准备适量的沙包,防止消防废水向厂外泄漏,事故应急池排水方式为 强排水(不使用强制排放泵时废水不会主动外排),事故产生的废水可暂存在厂区内, 事故废水收集后交给有处理能力的单位处理。

三级:必须与其他企业形成联动,当本项目出现重特大事故时,可考虑使用附近其他企业的应急系统收集事故废水、消防废水,杜绝事故废水、消防废水直接排放的情况,避免对纳污水体造成污染。当发生事故废水、消防废水进入厂区周边内河涌时,应立即向相关水利主管部门报告,并请求水利部门协助关闭周边内河涌与外河涌连接的水闸,最大程度将污染水体控制在内河涌范围内。

4) 应急预案:

项目应编制突发环境事件应急预案并报主管部门备案。项目可针对以上突发环境事件情景开展应急演练。

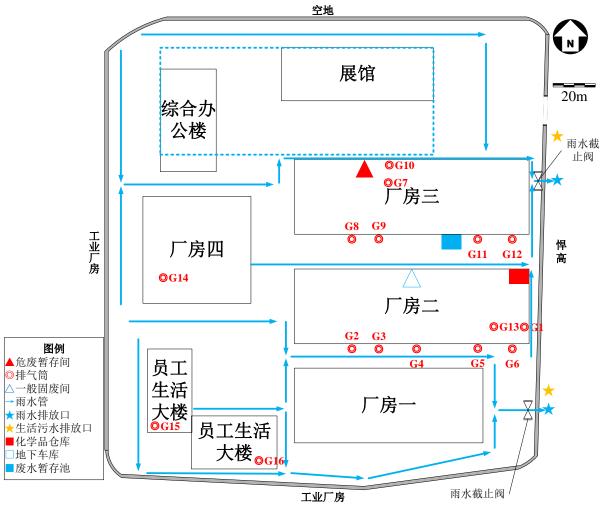


图5.7-1 项目雨水管网图

5.7.7 环境风险简单分析表

项目环境风险简单分析表如下。

表 5.7-7 建设项目环境风险简单分析内容表

建设项目名称	J 3	广东阅生活家居科技有限公司广东阅生活总部基地建设项目									
建设地点	(广东)省 (佛山)市 (顺德)区 (杏坛)县 (/)园										
地理坐标	经度	113.118682 °	纬度	22.783161 °							
	1、仓库:油性	、仓库:油性底漆(含二甲苯、环己酮)、油性面漆(含二甲苯)、油性漆固化剂									
主要危险物质	(含乙酸乙酯)	、UV 漆稀释剂	(含乙酸乙酯)、	异丙醇、润滑油	;						
及分布	2、危险废物暂	存间:废润滑油。									
	3、管道运输:	天然气									
环境影响途径	(1) 王嶽信	南沿海油 游太州	加料空港小酒安州	小 克式爆炸 払	 						
及危害后果(大	,		.,, , _, .,,,		成八火/ 主有的版 通过雨水管排放到						
气、地表水、地	1,10		(2) 被恋物件、 发生故障导致废气) — / — // V / V / V / V / V / V / V / V							
下水等)	附近水冲; (3	/	又生似障守玖废气	,起你作双刈河部,	人气环境影啊;						
	测及报警。可燃	然气体探测器采用	固定式探头。		可燃气体泄漏的探						
风险防范措施 要求	持通风,防止剂用厂房一漫坡内(4)危险废物(5)废气处理	世漏物积聚。为防 时的区域收集。 暂存间:危险废物 设施:按规范进行	止消防废水外溢, 勿暂存间设置围堰	可在外排雨水口 , 做好防渗措施 施安全设计, 规	。车间、危废间保 1设置截止阀,使 。 。 范喷淋塔等有机空						

5.7.8 风险分析结论

项目主要环境风险物质包括油性底漆(含二甲苯、环己酮)、油性面漆(含二甲苯)、油性漆固化剂(含乙酸乙酯)、UV漆稀释剂(含乙酸乙酯)、异丙醇、润滑油、废润滑油、天然气(不在厂内贮存,且属于低压管网运输)等,其储存量小,风险潜势为 I,环境风险评价为简单分析。通过简单分析,主要环境风险为泄漏和火灾次生灾害以及废气事故排放。项目风险物质储存量少,在采取风险控制措施的前提下,其环境风险总体是可控的。

5.8 土壤环境影响评价

5.8.1 土壤环境影响识别

根据土壤环境影响评价项目类别、占地规模与敏感程度,确定本项目土壤环境评价工作等级为一级。本项目对土壤的影响途径详见下表。

表 5.8-1 建设项目土壤环境影响类型与影响途径表

不同时段		污染影	/响型		生态影响型			
小时时权	大气沉降	地面漫流	垂直入渗	其他	盐化	碱化	酸化	其他
建设期	-	-	-	-	-	-	-	-
运营期	$\sqrt{}$	-	-	-	-	-	-	-
服务期满后	-	-	-	-	-	-	-	-

表 5.8-2 污染影响型建设项目土壤环境影响源及影响因子识别表

不同时段	污染 源	工艺流 程/节点	污染 途径	全部污染物指标	特征因子	备注
		调漆、喷漆、煤	大气 沉降	颗粒物、总 VOCs、 NMHC、二甲苯、臭气 浓度	二甲苯	连续;项目各排气筒或无组织排放污染物最大落地浓度范围内无土壤敏感目标
运营 期	喷漆 车间	平周 地	地面漫流	无	无	本项目生产废水统一收集并定期交由 有相应废水处理能力的单位处理;项 目地面做好硬底化及"三防"措施,因 此不会造成生产废水地面漫流影响
		1月7几	垂直 下渗	无	无	地面做好硬底化及"三防"措施,不会 造成垂直入渗影响

5.8.2 危险化学品、危废渗漏对土壤影响分析

本项目化学品仓库、危险废物储存区、事故应急池以及污水管线若没有适当的防渗漏措施,其中的有害组分渗出后,很容易经过雨水淋溶、地表径流侵蚀而渗入土壤,杀死土壤中的微生物,破坏微生物与周围环境构成系统的平衡,导致草木不生,对于耕地则造成大面积的减产、影响食品安全。同时这些水分经土壤渗入地下水,对地下水水质也造成污染。

本项目使用的化学品设置专门的房间存放,已做好防晒、防雨、防渗等措施;生产车间应做好相应的防渗层;且本项目产生的危险废物通过危险废物暂存间进行存放,危险废物暂存间已按照《危险废物贮存污染控制标准》(GB18597-2023)中的相关规范进行建设;本项目外排废水主要为生活污水,生活污水经预处理后排入杏坛污水处理厂,且废水收集系统各建构筑物按要求做好防渗措施,本项目产生的危险废物也均得到安全处理和处置,则本项目营运期对周边土壤的影响较小,本评价不考虑事故泄漏时产生垂

直入渗、地面漫流对土壤的预测分析。

5.8.3 废气排放对附近土壤的累积影响分析

本项目废气排放的主要污染物包括颗粒物、TVOC/NMHC、二甲苯、臭气浓度等,其中二甲苯属于影响土壤环境的特征污染物,对于气体和粒径小于 10~20 微米级别的小粒子,重力沉降作用可忽略,但是它们会由于湍流扩散和布朗运动沉积到各种物质表面,然后物质通过吸收、碰撞、光合作用和其他生物学、化学和物理学过程沉积到地面进入周围的土壤,从而使局地土壤环境质量逐步受到污染影响,因此,本环评主要考虑废气中的二甲苯经大气沉降对土壤环境预测分析。

(1) 预测范围

占地范围内及占地范围外 1.0km 范围内。

(2) 预测时段

项目运营年开始至运营50年后。

(3) 情景设置

本项目正常工况下厂房三油性喷涂有机废气排放对土壤环境的影响。

(4) 预测因子

选取二甲苯作为土壤影响的预测因子。

(5) 预测方法

本评价采用《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018)附录 E 的 预测方法一。

(1) 单位质量土壤中某种物质的增量可用下式计算:

$$\Delta S = n \left(I_s - L_s - R_s \right) / (\rho_b \times A \times D)$$

式中: ΔS ——单位质量表层土壤中某种物质的增量, g/kg;

 I_{S} — 预测评价范围内单位年份表层土壤中某种物质的输入量,g; I_{S} = $C\times V\times T\times A$; C (污染物浓度, g/m^3):通常取大气预测的最大落地浓度,最大落地浓度为 $10.1428\mu g/m^3$ (见表 5.3-39),因湿沉降(降雨)占主导 $80\sim 90\%$,干沉降仅占 $10\sim 20\%$,污染物二甲苯粒度细,因此 C 取最大落地浓度的 10 倍(湿沉降占比 90%),本项目为 $0.000101 g/m^3$; V (沉降速率,m/s):超细颗粒($<1\mu m$)取 0.001 m/s; T (沉降时间,s):按年运行时间,3300h,即 11880000s; A (预测面积, m^2):根据项目占地或评价范围确定,项目土壤评价范围面积约 $3994943m^2$ 。计算得出 $I_{S=\pi*}=0.334712g$ 。

L_s——预测评价范围内单位年份表层土壤中某种物质经淋溶排出的量, g; 本评价主要涉及大气沉降影响,不考虑随淋溶排出的量,即 L_s=0。

R_s——预测评价范围内单位年份表层土壤中某种物质经径流排出的量,g; 本评价主要涉及大气沉降影响,不考虑随径流排出的量,即 R_s=0。

ρ_b——表层土壤容重, kg/m³; 根据土壤现状监测, ρ_b取平均值 1074kg/m³。

A——预测评价范围, m², 项目土壤评价范围面积约 3994943m²。

D——表层土壤深度: 取 0.2m:

n——持续年份, a, 1年。

(2) 单位质量土壤中某种物质的预测值可根据其增量叠加现状值进行计算:

$$S = S_{\rm b} + \Delta S$$

式中: S_b ——单位质量土壤中某种物质的现状值,g/kg; 由于区域土壤背景值可较长时间维持一定值,变化缓慢,故本次评价区域土壤背景值采用项目土壤现状监测值的最大值计算,考虑到各监测点位中二甲苯的监测值均低于检出限,因此按检出限进行计算,则 $S_{b=\pi*}=1.2\times10^{-3}$ mg/kg;

S——单位质量土壤中某种物质的预测值,g/kg。

2、污染物累积影响预测

将相关参数带入上述公式,则可预测本项目投产 \mathbf{n} 年后土壤中二甲苯的累积量。具体计算参数和计算结果详见下表。

二甲苯
0.001200
1459
0.000002
0.000051
0.001251
0.000085
0.001285
570
达标

表 5.8-3 二甲苯土壤累积影响预测

注:评价标准取行《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中的筛选值(第二类用地)进行评价,因无二甲苯标准,本文选择间二甲苯+对二甲苯、邻二甲苯中的较严值(筛选值)进行对标评价。

由预测结果可知,在设置预测情景下,随着二甲苯输入时间的延长,在土壤中的累积量逐步增加,但累积增加量很小,在土壤中的累积量基本可以忽略,在运行30至50

年后,污染物在土壤中的累积量仍可达《土壤环境质量建设用地土壤污染风险管控标准》 (GB36600-2018)中的筛选值(第二类用地)要求,不会对周边土壤产生明显影响。

5.8.4 小结

综合上述分析,项目危险废物储存区等均严格按照《危险废物贮存污染控制标准》(GB18597-2023)有关规范设计,废水收集管道、生产车间等各建构筑物按要求做好防渗措施,项目建成后对周边土壤的影响较小。废气排放对周边土壤环境中的二甲苯的贡献浓度较低,运行30至50年后,各污染物在土壤中的累积仍小于《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中的筛选值(第二类用地)要求,项目对周边土壤环境影响较小。

表 5.8-4 土壤环境影响评价自查表

工作内容				完成情况		备注		
	影响类型	污染	污染影响型☑; 生态影响型□; 两种兼有□					
	土地利用类型		建设用地☑;农用地□;未利用地□					
	占地规模	(4.32316) hm ²						
影响	敏感目标信息	敏感目标(光华		月地)、方位(西北、南 0m、50m)	面)、距离			
识	影响途径	大气沉降☑;	地面漫流口; 彗	垂直入渗□;地下水位□;	其他()			
别	全部污染物	SO ₂ , NOx,	总 VOCs、颗	粒物、二甲苯、NMHC	、石油烃			
	特征因子			石油烃				
	所属土壤环境影 响评价项目类别		I类☑;II类□;IV类□					
	敏感程度							
	评价工作等级	一级☑;二级□;三级□						
	资料收集							
	理化特性	详见表 4.4-5			同附录 C			
	现状监测点位		占地范围内	占地范围外	深度/m			
ᆲ		表层样点数	2	4	0.2	点位布置图		
现		柱状样点数	5	0	3			
状调		<u> </u>		各、铜、铅、汞、镍、匹				
查		仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺-1,2- 二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1,2-						
内内								
容	现状监测因子			、四氯乙烯、1,1,1-二氯d 三氯丙烷、氯乙烯、苯、				
	201八 血 701 四 1				•			
		二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、 邻二甲苯、硝基苯、苯胺、2-氯酚、苯并[a]蒽、苯并[a]芘、苯并						
		[b]荧蒽、苯并 $[k]$ 荧蒽、菌、二苯并 $[a,h]$ 蒽、茚并 $[1,2,3-cd]$ 芘、萘、						
		石油烃(C ₁₀ -C ₄₀)						
现		pH、含水率、砷、镉、六价铬、铜、铅、汞、镍、四氯化碳、氯						
状	评价因子			I,2-二氯乙烷、1,1-二氯乙				
评		二氯乙烯、反-	1,2-二氯乙烯、	二氯甲烷、1,2-二氯丙	烷、1,1,1,2-			

	工作内容		完成情况		备注	
价		四氯乙烷、1,1,2	,2-四氯乙烷、四氯乙烯、1,1,1-	-三氯乙烷、1,1,2-		
		三氯乙烷、三氯	乙烯、1,2,3-三氯丙烷、氯乙烯	、苯、氯苯、1,2-		
			〔苯、乙苯、苯乙烯、甲苯、间二			
		邻二甲苯、硝基	苯、苯胺、2-氯酚、苯并[a]蒽、	苯并[a]芘、苯并		
		[b]荧蒽、苯并[k]	荧蒽、崫、二苯并[a,h]蒽、茚并	序[1,2,3-cd]芘、萘、		
			石油烃(C10-C40)			
	评价标准	GB 15618□; GB	36600☑; 表 D.1□; 表 D.2□;	其他()		
		从监测结果可知	,项目所在区域点位▼1、▼2 =	上壤环境质量符合		
			农用地土壤污染风险管控标准	* * *		
	现状评价结论	15618-2018) 相应筛选值,其余点位土壤环境质量符合 《土壤环				
		境质量 建设用地土壤污染风险管控标准(试行)》				
		(GB36600-2018)表 1 中第二类用地的筛选值。 二甲苯				
	预测因子					
影	预测方法		附录 E☑; 附录 F□; 其他 ()			
响	预测分析内容		影响范围()			
预	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	影响程度()				
测	预测结论		达标结论: a) ☑, b) □; c) □			
			不达标结论: a)□; b)□			
防	防控措施	土壤环境质量现	伏保障☑;源头控制☑;过程防控	☑; 其他()		
治		监测点数	监测指标	监测频次		
措	跟踪监测	1	间二甲苯+对二甲苯、邻二甲	3年1次		
施 -		1	苯、石油烃(C10-C40)	3 年 1 次		
ИE	信息公开指标	/				
评价结论 从土壤环境影响的角度,项目的建设具				有可行性。		
	注 1: "□"为勾选项,可√; "()"为内容填写项; "备注"为其他补充内容。					

注 2: 需要分别开展土壤环境影响评级工作的,分别填写自查表。

5.9 生态环境的影响评价

本项目对生态环境的影响主要为运营期排放的废气扩散对区域内的生态植被造成 影响,在采取有效的废气治理措施后,本项目排放的废气能够达到标准要求,并且排放 量不大,不会对区域的生态环境造成明显不利影响。

此外,本项目陆域用地不涉及自然保护区、自然遗迹、人文遗迹、风景名胜区、珍 稀或濒危野生动物栖息地等陆域生态敏感目标。因此,本项目的建设和运营对陆生生态 环境基本没有影响。建议建设单位在车间外侧空地上适当种植灌木、花草。

表 5.9-1 建设项目生态环境影响评价自查表

工作内容		自査项目	
		重要物种□;国家公园□;自然保护区□;自然公园□;世界自然	
化大型响 印刷	生态保护目标	遗产□;生态保护红线□;重要生境□;其他具有重要生态功能、	
生态影响识别		对保护生物多样性具有重要意义的区域□; 其他□	
	影响方式	工程占用□;施工活动干扰□;改变环境条件□;其他□	

广东阅生活家居科技有限公司广东阅生活总部基地建设项目环境影响报告书

生态现状调查	工作	内容	自査项目			
生物群落ロ(物种口()			
生态系统ロ(生境口(
评价因子 生物多样性ロ() 生态敏感区口() 自然景观口() 自然遗迹口()) 其他口()) 评价范围 陆域面积: (0.33) km²; 水域面积: () km² 资料收集区 遥感调查口; 调查样方、样线口; 调查点位、断面口表 多和公众咨询法口; 其他口病 有季口; 夏季口; 秋季口; 冬季口; 丰水期口; 枯水期口; 平水期间所在区域的生态问题 水土流失口; 沙漠化口; 石漠化口; 盐渍化口; 生物入侵口; 污染; 海口; 生态问题 中在区域的生态问题 市在区域的生态问题 市在区域的生态问题 事口; 其他口病 大土地利用口; 生态系统口; 生物多样性口; 重要的种口; 生态敏感区口; 其他口病 大生态影响预测 与评价 下价内容 植被/植物群落口; 土地利用口; 生态系统口; 生物多样性口; 重要的种口; 生态敏感区口; 生物入侵风险口; 其他口病 大块、大豆、大豆、大豆、大豆、大豆、大豆、大豆、大豆、大豆、大豆、大豆、大豆、大豆、			生物群落口()			
生态敏感区□() 自然景观□() 自然景观□() 自然景观□() 自然遗迹□() 其他□() 于价等级 一级□ 二级□ 三级☑ 生态影响简单分析□ 评价范围 陆域面积: (0.33) km²; 水域面积: () km 资料收集☑ 遥感调查□;调查样方、样线□;调查点位、断面□ 专家和公众咨询法□;其他□			生态系统口()			
自然景观□() 自然遗迹□() 其他□() 注他□() 注他□() 注他□() 注他□() 注他□() 注化□() 注述面积:(0.33)km²; 水域面积:()km 语域面积:(0.33)km²; 水域面积:()km 语类和公众咨询法□; 其他□		评价因子	生物多样性口()			
自然遗迹□() 其他□()			生态敏感区口(
其他□() 评价等级 一级□ 二级□ 三级☑ 生态影响简单分析□ 活域面积: (0.33) km²; 水域面积: () km 资料收集☑ 遥感调查□; 调查样方、样线□; 调查点应、断面□ 专家和公众咨询法□; 其他□ 调查方法 调查时间 春季□; 夏季□; 秋季□; 冬季□; 丰水期□; 枯水期□; 平水期 所在区域的生 水土流失□; 沙漠化□; 石漠化□; 盐渍化□; 生物入侵□; 污染; 善。 其他□ 证价内容 植被/植物群落□; 土地利用□; 生态系统□; 生物多样性□; 重要物种□; 生态敏感区□; 其他□ 生态影响预测 与评价 中价内容 植被/植物群落□; 土地利用□; 生态系统□; 生物多样性□; 重要物种□; 生态敏感区□; 其他□ 生态影响预测 证价内容 技性☑ 定性和定量□ 植被/植物群落□; 土地利用□; 生态系统□; 生物多样性□; 重要物种□; 生态敏感区□; 其他□ 生态影响预测 证价内容 本被/植物群落□; 土地利用□; 生态系统□; 生物多样性□; 重要物种□; 生态敏感区□; 其他□ 生态保护对策 证证□; 减缓□; 生态修复□; 生态补偿□; 科研□; 其他□ 生态保护对策 描施 生态温测计划 全生命周期□; 长期跟踪□; 常规□; 无□ 环境管理 环境管理 环境监理□; 环境影响后评价□; 其他□			自然景观□(
评价等级 一级□ 二级□ 三级☑ 生态影响简单分析□ 评价范围 陆域面积: (0.33) km²; 水域面积: () km 资料收集☑ 遥感调查□; 调查样方、样线□; 调查点位、断面□ 专家和公众咨询法□; 其他□ 春季□; 夏季□; 秋季□; 冬季□; 丰水期□; 枯水期□; 平水期 所在区域的生态问题 ** ** ** ** ** ** ** ** ** ** ** ** **			自然遗迹□ (
注水が直面 に域面积: (0.33) km²; 水域面积: () km 資料収集区 遥感调査ロ; 调査样方、样线ロ; 调査点位、断面ロ 表家和公众咨询法ロ; 其他ロ 海査时间 春季ロ; 夏季ロ; 秋季ロ; 冬季ロ; 丰水期ロ; 枯水期ロ; 平水期 所在区域的生 水土流失ロ; 沙漠化ロ; 石漠化ロ; 盐渍化ロ; 生物入侵ロ; 污染 害ロ; 其他ロ 接水植物群落ロ; 土地利用ロ; 生态系统ロ; 生物多样性ロ; 重要 接水が 接水・土地利用ロ; 生态系統ロ; 生物多样性ロ; 重要 接水・土地利用ロ; 生态を表が、 上地利用ロ; 生态を表が、 上地和田口; 上述の、 上述の、			其他□()			
選載の	评价	等级	一级□ 二级□ 三级☑ 生态影响简单分析□]		
生态现状调查 与评价 春季□; 夏季□; 秋季□; 冬季□; 丰水期□; 枯水期□; 平水期 所在区域的生 水土流失□; 沙漠化□; 石漠化□; 盐渍化□; 生物入侵□; 污染; 害□; 其他□	评价	范围	陆域面积: (0.33) km²; 水域面积: () km	n ²		
生态现状调查 与评价 春季□: 夏季□: 秋季□: 冬季□: 丰水期□: 枯水期□: 平水期 所在区域的生态问题 水土流失□: 沙漠化□: 石漠化□: 盐渍化□: 生物入侵□: 污染治 害□: 其他□ 植被/植物群落□: 土地利用□: 生态系统□: 生物多样性□: 重要 物种□: 生态敏感区□: 其他□ 评价方法 定性☑ 定性和定量□ 植被/植物群落□: 土地利用□: 生态系统□: 生物多样性□: 重要 推被/植物群落□: 土地利用□: 生态系统□: 生物多样性□: 重要 推被/植物群落□: 土地利用□: 生态系统□: 生物多样性□: 重要 推被/植物群落□: 土地利用□: 生态系统□: 生物多样性□: 重要 推拔/植物群落□: 土地利用□: 生态系统□: 生物多样性□: 重要 非拔/ 表面		调杏方注	资料收集☑,遥感调查□;调查样方、样线□;调查点位、断面□	□;		
生态现状调查 与评价 水土流失口;沙漠化口;石漠化口;盐渍化口;生物入侵口;污染;		M 旦 / J 1公	专家和公众咨询法□; 其他□			
新在区域的生 水土流失□;沙漠化□;石漠化□;盐渍化□;生物入侵□;污染だ	生太和壯调杏	调查时间	春季□;夏季□;秋季□;冬季□;丰水期□;枯水期□;平水期□			
志问题 害□; 其他□ 评价内容 植被/植物群落□; 土地利用□; 生态系统□; 生物多样性□; 重量物种□; 生态敏感区□; 其他□ 生态影响预测与评价 植被/植物群落□; 土地利用□; 生态系统□; 生物多样性□; 重量物种□; 生态敏感区□; 生物入侵风险□; 其他□ 生态保护对策措施 遊让□; 减缓□; 生态修复□; 生态补偿□; 科研□; 其他□ 生态监测计划 全生命周期□; 长期跟踪□; 常规□; 无□ 环境管理 环境监理□; 环境影响后评价□; 其他□		所在区域的生	水土流失□;沙漠化□;石漠化□;盐渍化□;生物入侵□;污染危			
评价内容 物种□; 生态敏感区□; 其他□ 生态影响预测与评价 证价方法 定性☑ 定性和定量□ 植被/植物群落□; 土地利用□; 生态系统□; 生物多样性□; 重要物种□; 生态敏感区□; 生物入侵风险□; 其他□ 生态保护对策措施 避让□; 减缓□; 生态修复□; 生态补偿□; 科研□; 其他□ 生态保护对策措施 生态临测计划 全生命周期□; 长期跟踪□; 常规□; 无□ 环境管理 环境监理□; 环境影响后评价□; 其他□	-9 VI VI	态问题	害□; 其他□			
物种□; 生态敏感区□; 其他□		评价内容	植被/植物群落□;土地利用□;生态系统□;生物多样性□;重	要		
生态影响预测			物种□;生态敏感区□;其他□			
与评价 i 被/植物群落□; 土地利用□; 生态系统□; 生物多样性□; 重要物种□; 生态敏感区□; 生物入侵风险□; 其他□ 生态保护对策 措施 避让□; 减缓□; 生态修复□; 生态补偿□; 科研□; 其他□ 生态监测计划 全生命周期□; 长期跟踪□; 常规□; 无□ 环境管理 环境监理□; 环境影响后评价□; 其他□	生太影响猗泖	评价方法	定性☑ 定性和定量□			
************************************		评价内突	植被/植物群落□;土地利用□;生态系统□;生物多样性□;重	要		
生态保护对策 措施 生态监测计划 全生命周期□;长期跟踪□;常规□;无□ 环境管理 环境监理□;环境影响后评价□;其他□	3 11 101	VI VI P 1 T T	物种□;生态敏感区□;生物入侵风险□;其他□			
生态监测计划 全生命周期□;长期跟踪□;常规□;无□ 「お境管理 「「「「」」」「「「」」「「」」「「」」「「」」「「」」「」」「」」「」」「」	生太 促护对等	对策措施	避让口;减缓口;生态修复口;生态补偿口;科研口;其他口			
环境管理 环境监理□;环境影响后评价□;其他□		生态监测计划	全生命周期□;长期跟踪□;常规□;无□			
评价结论 生态影响 可行 以 ,不可行口	1日 1)匠	环境管理	环境监理□;环境影响后评价□;其他□			
	评价结论	生态影响	可行 囚 ,不可行口			
注: "□"为勾选项 , 可√;"()"为内容填写项。						

6环境保护措施及其可行性论证

根据项目的实际情况,对拟采取的废水处理措施、废气处理措施以及噪声、固体废弃物处置办法进行技术可行性分析,以确保污染物稳定达标排放,减少对外环境的不良影响。下面对本项目污染防治措施及技术可行性做出分析。

6.1 水污染防治措施及其经济、技术论证

6.1.1 水污染防治措施技术可行性分析

本项目生产用水主要有水帘柜、喷淋塔用水,生产废水为水帘柜废水、喷淋塔废水,以上生产废水均委托有相应工业废水处理能力的单位回收处置,不外排。项目外排废水主要为生活污水,生活污水经三级化粪池处理,食堂废水经隔油隔渣池处理后,纳入杏坛污水处理厂进行处理,为间接排放。

6.1.1.1 生活污水预处理措施可行性分析

本项目生活污水经三级化粪池处理,食堂废水经隔油隔渣池处理,主要污染物包括 COD_{Cr}、BOD₅、SS、氨氮等,外排生活污水中各污染物的负荷不高,是常规的有机污染类型。经三级化粪池、隔油隔渣池等简单预处理措施处理后,可达到广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段三级标准,排入杏坛污水处理厂进一步处理。

因此,本项目生活污水的预处理措施是技术可行的。

6.1.1.2 杏坛污水处理厂纳污可行性分析

杏坛污水处理厂一期服务范围为杏坛镇区,包括齐杏、雁园、马齐、杏坛、吕地、罗水六个居委会的全部用地和桑麻、西北、龙潭三个村的部分用地;二期污水收集范围为以下几大区域的生活污水及经过预处理的工业废水;①顺德浦项钢板有限公司片区;②美的工业园片区;③大型村居片区,包括高赞村、上地村、昌教村、光辉村、西登村和河北路以北河涌收纳的村庄;④杏坛工业园二期片区;⑤大型楼盘片区,包括金海岸、佳兆业、中博兆业、银座、海骏达上苑和敬老院东侧地块等。本项目位于杏坛污水处理厂的服务范围,且已接通市政管网。

杏坛污水处理厂位于佛山市顺德区杏坛镇工业园科技五路,由佛山市顺德区环建环保水务有限公司投资建设,目前主要接纳并处理杏坛镇的生活污水和经过预处理的工业废水。杏坛污水处理厂现状建设规模为6万吨/日,分两期建成。首期工程于2004年以

"顺德区杏坛镇污水处理厂"为项目名称申报登记表(批准号 20043352),2007 年建成并整体验收(编号:验处 20070078),2018 年进行提标改造(批准号 20180133)并于 2019 年 3 月整体验收(编号:验杏处 20190093),建设规模及验收规模均为 2 万吨/日;二期工程于 2014 年以"顺德区杏坛镇污水处理厂二期扩建工程"为项目名称申报环境影响报告表并获得审批(批准号 20140004),2021 年 4 月自主验收后投入运行,建设规模及验收规模均为 4 万吨/日。污水处理厂处理量与季节气候相关,受纳水量不超设计水量的 1.2 倍。污水处理工艺为"改良 A²/O 处理工艺",该工艺是近年来国际公认的处理生活污水及工业废水的先进工艺,根据佛山市顺德生态环境监测站对杏坛污水处理厂废水排放的监测结果(见表 6.1-1)可知,杏坛污水处理厂污水经处理后能够稳定达标排放。项目生活污水(含餐厨废水)排放量约为 30t/d(年工作 330 天),约占杏坛污水处理厂处理规模(60000t/d)的 0.05%,不会对杏坛污水处理厂造成冲击,因此本项目生活污水纳入杏坛污水处理厂处理是可行的。

根据《关于进一步规范城镇(园区)污水处理环境管理的通知》(环水体(2020)71号),本项目生活污水经处理达标后可排入杏坛污水处理厂进行处理。

监测点位/样品 编号	项目	单位	处理后监测结果	标准限值	预处理或处理后 达标情况
	pH 值	无量纲	7.5	6-9	达标
	化学需氧量	mg/L	15	≤40	达标
	悬浮物	mg/L	8	≤10	达标
	氨氨	mg/L	0.050	≤5	达标
	总氮	mg/L	2.57	≤15	达标
	总硝	mg/L	0.04	0.5	达标
WS-00201 废水	五日生化需氧量	mg/L	8.0	≤10	达标
排放口	总氰化物	mg/L	0.001L		
/ZS240111004	挥发酚	mg/L	0.002L		
	六价铬	mg/L	0.004L	≤0.05	达标
	总铬	mg/L	0.030L	≤0.1	达标
	总砷	mg/L	0.0008	≤0.1	达标
	总汞	mg/L	0.00005	≤0.001	达标
	总镉	mg/L	0.0001L	≤0.01	达标
	总铅	mg/L	0.001L	≤0.1	达标

表 6.1-1 杏坛污水处理厂废水监测数据

备注: 1、污染物执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准及广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准的较严值;

表 6.1-2 项目与《关于进一步规范城镇(园区)污水处理环境管理的通知》的相符性分析

^{2、}检测报告编号: (顺)环测水字 B (2024)第 011102 号,采样时间: 2024 年 01 月 11 日。

序号	政策要求	工程内容	符合性
1	纳管企业应当防止、减少环境污染和生态破坏, 按照国家有关规定申领排污许可证,持证排污、 按证排污,对所造成的损害依法承担责任。	本项目产生的生活污水经处理 达标后外排,减少环境污染。 本项目建设后投产前,按照国 家有关规定申领排污许可证, 持证排污、按证排污。	符合
2	按照国家有关规定对工业污水进行预处理,相关标准规定的第一类污染物及其他有毒有害污染物,应在车间或车间处理设施排放口处理达标;其他污染物达到集中处理设施处理工艺要求后方可排放。	本项目生产废水委外处理,不 外排	符合
3	依法按照相关技术规范开展自行监测并主动公开 污染物排放信息,自觉接受监督。属于水环境重 点排污单位的,还须依法安装使用自动监测设备, 并与当地生态环境部门、运营单位共享数据。	建设单位不属于水环境重点排污单位;生产废水委外处理,不外排;生活污水排入污水处理厂,无需监测。	符合
4	发生事故致使排放的污水可能危及污水处理厂安 全运行时,应当立即采取启用事故调蓄池等应急 措施消除危害,通知运营单位并向生态环境部门 及相关主管部门报告	项目化学品仓库设防泄漏措施	符合

项目餐厨废水经隔油隔渣处理、生活污水经三级化粪池处理达到广东省地方标准 《水污染物排放限值》(DB44/26-2001)第二时段三级标准后,通过市政污水管网排入 杏坛污水处理厂进一步处理,满足污水厂的纳管要求,不会对污水厂造成冲击负荷,也 不会影响其正常运行,因此本项目生活污水依托杏坛污水处理厂处理是可行的。

只要企业能确保生活污水经预处理再排至污水管网送杏坛污水处理厂达标处理后 排放,不会对尾水受纳水体北马河、顺德支流的水质造成大的影响。

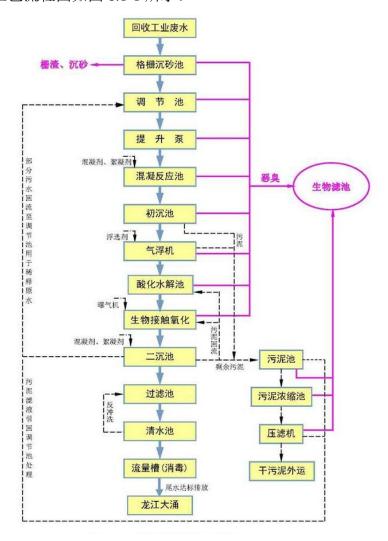
为了确保外排废水能得到有效的预处理,项目在日常经营过程中,应派专人对生产 废水治理设施进行定期的检查、维护,使设备处于最佳工况。

6.1.1.3 有机废水委外处理可行性分析

本项目水帘柜废水、喷淋塔废水经混凝沉淀后委托有相应处理能力的工业废水处理单位处理。除捞渣外,混凝沉淀可进一步减少废水内悬浮物,并削减一部分 COD, 经处理后废水可增加循环使用次数,减少废水更换频次。

生产废水委外处理可行性分析如下。

(1) 公司介绍


佛山市顺德区绿点废水回收处理有限公司高浓度有机工业废水回收处理项目(以下简称龙江工业废水集中处理项目)位于佛山市顺德区龙江镇龙江居委会隔高工业区(北华路南侧,龙江生活污水处理厂东侧地块)。龙江工业废水集中处理项目分两期建设,一期设计日处理高浓度有机废水 1500 吨,一期工程正试运营,服务年限为 25 年。主要

服务对象为顺德区内印刷、家具制造、食品加工和化工等工业企业的高浓度有机废水(不含镍、铬等一类污染物)。

(2) 污水收集方式和治理工艺

本项目生产废水为水帘柜废水、喷淋塔废水,以上废水均属于有机废水,产生量合计约 4.6/d(1516.8t/a),项目内有机废水每 3 天转运 1 次,每年转运 110 次,可暂存 5 天有机废水,有机废水通过专用槽罐车(槽车额定运载量为 25m³/辆)将产生的有机废水外运处置,每次最大外运量约为 23m³,故项目通过槽车清运有机废水是可行的。运输路线通过佛山一环--南环高速--乐龙路--北华路,不经过水源保护区,运输过程环境风险可控。

该污水处理项目废水处理达到广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准后通过专用管道排入龙江大涌。该项目采用标准防渗防腐罐式槽车收集和运输,处理工艺采用"混凝沉淀—气浮—水解酸化—生物接触氧化—沉淀过滤"组合工艺,工艺流程图如图 6.1-1 所示。

第 336 页

图 6.1-1 龙江工业废水集中处理项目处理工艺

(3) 设计指标和排污去向

绿点污水处理项目设计进水和出水水质如下表。项目废水处理达到广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准后通过专用管道排入龙江大涌。

项目	pН	COD _{Cr}	BOD ₅	SS	色度	石油类
单位	无量纲	mg/L	mg/L	mg/L	倍	mg/L
设计进水	8-9	≤3800	≤850	≤200	≤50000	≤120
设计出水	6-9	≤90	≤20	≤60	≤40	≤5.0

表 6.1-3 佛山市顺德区绿点废水回收处理有限公司设计进水和出水水质一览表

项目水帘柜废水、喷淋废水按要求定期整池更换,预计可满足佛山市顺德区绿点废水回收处理有限公司设计进水水质要求。项目水帘柜废水、喷淋废水量较少,建设废水治理设施不太实际,处理成本及日后运行费用较高,管理也较困难。

佛山市顺德区绿点废水回收处理有限公司龙江工业废水集中处理项目一期设计日处理高浓度有机废水 1500 吨,现剩余容量约 1000 吨/日,本项目有机废水产生量为4.6m³/d,佛山市顺德区绿点废水回收处理有限公司能够满足本项目废水处理的要求。

综上所述,水帘柜废水、喷淋废水委托佛山市顺德区绿点废水回收处理有限公司处理是可行的。

项目废水收集池需进行加盖密封处理,按照危险废物的管理落实好废水的储存,建设单位需在项目建成投产前,按照有机废水产生量与工业废水处理单位签订服务合同,并在运营期严格落实废水转移联单管理,如实记录废水产生量、存储量和转移量等数据并妥善保管。

综上所述,项目对周围水环境影响不大。

6.1.2 水污染防治措施经济可行性分析

本项目生活污水预处理设施投资约 30 万元,占项目总投资(30600 万元)的 0.1%;使用隔油隔渣池处理食堂废水,使用三级化粪池处理生活污水均为成熟可靠的废水处理工艺。

因此,本项目水污染防治措施从经济角度考虑,是可以接受的,在经济上具有可行性。

6.2 大气污染防治措施及其经济、技术论证

6.2.1 大气污染防治措施技术可行性分析

6.2.1.1 油性油漆喷漆废气防治措施技术可行性分析

油性油漆喷漆废气主要分为四部分:

- ①调漆的过程会挥发出少量有机废气及臭气浓度;
- ②喷漆过程会产生漆雾颗粒、有机废气及臭气浓度:
- ③流平、烘干过程油漆中有机溶剂挥发出的有机废气及臭气浓度;
- ④喷枪擦拭清洗过程稀释剂挥发产生的有机废气及臭气浓度。

根据项目涂料成分分析,喷漆废气主要污染物为漆雾(颗粒物)、总 VOCs、二甲苯、臭气浓度。

厂房二油性漆喷漆废气收集并经水帘柜除漆雾,然后和烘干废气一起通过"二级水喷淋+干式过滤+沸石转轮吸附-脱附+催化燃烧"废气处理设施进行处理,处理后引至40m排气筒 G1 排放;厂房三油性漆喷漆废气收集并经水帘柜除漆雾,然后和烘干废气一起通过2套"二级水喷淋+干式过滤"处理后一并经"沸石转轮吸附-脱附+催化燃烧"废气处理设施进行处理,处理后引至40m排气筒 G7 排放。根据《挥发性有机物无组织排放控制标准》(GB 38722-2019),"废气收集系统的输送管道应密闭。废气收集系统应在负压下运行,若处于正压状态,应对输送管道组件的密封点进行泄漏检测,泄漏检测值不应超过500 μmol/mol,亦不应有感官可察觉泄漏",本项目喷漆废气收集系统的输送管道密闭,底漆喷涂、调漆、烘干废气在负压下运行,面漆喷涂废气处于正压状态,企业将对输送管道组件的密封点进行泄漏检测,泄漏检测值不超过500μmol/mol,且不应有感官可察觉泄漏,符合要求。

1、漆雾处理措施的可行性分析

(1) 水帘柜

项目漆雾在排风机引力的作用下向水帘柜的内壁水幕板方向流动,一部分漆雾直接接触到水幕板上的水膜而被吸附,一部分漆雾在经过水幕板上淌下的水帘时被冲刷掉,其余未被捕捉到的漆雾在通过蜗壳水帘区时被清洗掉。水流将漆雾及打磨粉尘冲刷带入水箱中,达到去除效果;系统内的水由水泵提升到水幕及多级水帘过滤器顶的溢水槽,溢流到水幕板上形成水帘。另外,需要定期清理循环系统内的沉渣,避免沉渣过多堵塞

进出水口造成处理效率下降。本项目对水帘柜定期捞渣,捞渣频次为2次/天。

(2) 喷淋塔

喷淋塔内设有喷淋式清洗装置,用喷射的水滴来清理漆雾,其结构由喷淋塔体、喷水系统和进排风系统组成。喷水系统是清理漆雾的主要部分。喷漆废气在引风机作用下从喷淋塔底部进入塔内,在上升过程中与从上而下喷射的水雾充分接触、洗涤,废气夹带的漆雾被水捕获,落入水中,排入循环水池内。向循环水池中投加成型剂、悬浮剂,使水池中漆渣凝结,漆渣经沉淀和格栅隔除,固液分离,使循环水澄清。循环水经处理后循环使用,定期更换。漆渣由人工定期清理。喷淋塔内设置有除雾器装置,除雾器进行水汽分离将废气湿度降至80%以下。

(3) 干式过滤器

气流过气旋喷淋后仍会挟带少量水雾,此时气体较为潮湿,如果直接进入活性炭吸附箱,将明显降低活性炭的吸附效果和使用寿命。因此在废气进入活性炭箱之前,应该先对废气进行除湿处理。本项目使用的干式过滤器内配备有过滤棉。同时,箱体内折流板的多折向结构增加了雾沫被捕集的机会,未能被捕集的雾沫在下一个弯折处经相同作用被捕集,这种设计提高了除雾效率。

2、有机废气及臭气处理措施的可行性分析

有机废气处理措施比选:参考《大气污染治理工程技术导则》(HJ 2000-2010)的相关内容及搜集的有关资料,挥发性有机化合物的基本处理方法包括回收类方法和消除类方法,回收类方法包括吸附法、吸收法和冷凝法;消除类方法包括直接燃烧法、催化燃烧法等,各种方法的适用范围和特点详见下表。

	农 0.2-1 有机放气 市内和建油地位建							
序号	方法	原理	优点	缺点	适用范围			
1	吸附法	废气的分子扩散到固体 吸附剂表面,有害成分 被吸附而达到净化	可处理含有低浓度的碳 氢化合物和低温废气, 去除效率高、能耗低、 工艺成熟、脱附后溶剂 可回收	不适合用于高温、高含 尘的有机废气,需要定 期更换饱和活性炭,会 造成二次污染,运行成 本较高	常温、低浓 度、废气量 较小时的废 气治理			
2	吸收法	有机物相似相溶原理,常采用沸点较高、蒸汽压较低的柴油、煤油作为溶剂,使 VOC 从气相转移到液相中,然后对吸收液进行解吸处理,回收其中的 VOC,同时使溶剂得以再生	低浓度有机废气比较有 效且费用低,而且能将 污染物转化为有用产品	不适合用于高温、高浓度废气,对有机成分选择性大,需配备加热解析回收装置,设备体积较大,运行成本较高	温、低浓度			
3	直接	废气引入燃烧室与火焰	燃烧效率高,管理容易;	处理温度高, 需燃料费	有机溶剂含			

表 6.2-1 有机废气常用治理措施比选

序号		原理	优点	缺点	适用范围
	燃烧法	直接接触,使有害物燃	仅烧嘴需经常维护,维	高;燃烧装置、燃烧室、	量高、湿度
		烧生成 CO2和 H2O, 使	护简单;装置占地面积	热回收装置等设备造价	高的废气治
		废气净化	小; 不稳定因素少, 可	高; 处理像喷漆室浓度	理
			靠性高	低、风量大的废气不经	
				济	
		利用燃气或燃油等辅助			
4	热力燃 烧	燃料燃烧,将混合气体加热,使有害物质在高温作用工公留土工实物	温度低 700~870℃,投资 费用低,可回收热能	运行费用高	低浓度废气
		温作用下分解为无害物质。			
		 在催化剂作用下,使有	 与直接燃烧法相比,能	催化剂价格高,需考虑	废气温度
_	催化	机物废气在引燃点温度	在低温下氧化分解,燃	催化剂中毒和催化剂寿	高、流量小、
5	燃烧法	以下燃烧生成 CO ₂ 和	料费可省 1/2;装置占地	命,必须进行前处理除	有机溶剂浓度高
		H ₂ O 而被净化	面积小; NOx 生成少	去尘埃、漆雾等;催化 剂和设备价格高	度高、含杂 质少的场合
		其原理是在高温下将可	采用蓄热室蓄热与氧化	装置重量大,体积大,	大风量、低
	-11.11.15	燃废气氧化成对应的氧	室互相切换的方式进	要求尽可能连续操作,	浓度废气,
6	蓄热式	化物和水,从而净化废	行,以大幅减少热量的	一次性投资费用相对较	含有多种有
	燃烧法	气,并回收废气分解时	损耗,RTO 的热回收效	高,不能彻底净化处理	机成分或有
		所释放出来的热量	率高达 90%以上。	含硫含氮含卤素的有机 物	机成分经常 发生变化
		降低有害气体的温度,	设备、操作条件简单,	净化效率低,不能达到	组分单一的
7	冷凝法	能使其某些成分冷凝成	攻畬、採作余件间半, 回收物质纯度高	伊化效率低,不能达到 标准要求	高浓度有机
		液体的原理	四权物质纪文间		废气
		生物膜法是利用微生物		成分复杂的废气或难以	
	生物	的新陈代谢过程对多种 有机物和某些无机物进	设备简单,运行维护费	降解的 VOC, 去除效率 较差,体积大和停留时	适用于多组
8	上初 处理法	行生物降解,生成 CO ₂	用低,无二次污染等优	间长,选用不同的填料,	分废气,对
	处垤仏	11 ± 40 样解,主从 12 12 和 12 13 升 12 14 升 12 15 升	点	降解效果参差不齐。不	环境友好
		工业废气中的污染物质		能回收利用污染物质	
		采用 UV 光解净化器将		配口仅有/117米内次	
		废气中的有毒有害的化			
		学分子链裂解、断链、			」 适用于喷
		氧化、分解,将大分子	 具有广泛适用性,高效		涂、涂装、
	UV 光解	链分解成无毒无害的小	除恶臭; 无需添加任何		家具喷漆、
9	处理法	分子,在光氧催化净化	物质;适应性强;性价	投资和运行成本高	印刷、化工、
	, , , , ,	器内低温等离子体及	比高;运行成本低		涂料生产等
		UV 光氧化光源能够完			行业
		全将有毒有害的有机废			
		气氧化分解为二氧化 碳、水和矿物质			
		是通过高压脉冲电晕放			适用范围
		电,在常温、常压下获			广,尤其适
	低温	得大量高能电子和O、	适用范围广,占地小、	投资成本高、需定期更	用其他方法
10				换离子管,有自燃的可	难以处理的
	处理法	中的有害分子进行氧化	需添加任何添加剂	能性	多组分恶臭
		降解反应,使污染物最			气体
		终转化为无害物			

催化燃烧工艺:

项目拟采用的催化燃烧原理是利用贵金属Pt、Ba作为催化剂,使废气在较低的温度下氧化分解成无害的CO₂和H₂O并释放出热量,反应方程式如下:

$$C_nH_m + (n + m/4)O_2 \xrightarrow{280-350^{\circ}} nCO_2 + m/2H_2O + A =$$

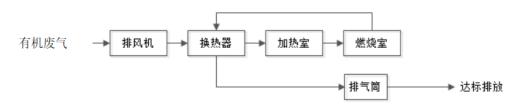


图6.2-1 喷漆有机废气处理工艺沸石转轮吸附/脱附+CO流程图

工艺流程说明:废气进入催化燃烧装置的换热器进行预热,脱附废气温度升高,若废气温度达到催化燃烧设定温度(280~320℃),则废气在催化剂的作用下催化氧化,若废气没有达到催化燃烧设定温度,则需要利用天然气加热使废气温度达到催化设定温度,有机物经催化反应后放出大量热量,催化后的废气在进入催化燃烧内置的换热器与新进的脱附废气进行热交换,将热量换热给新进的脱附废气,自身温度降低后高空排放。

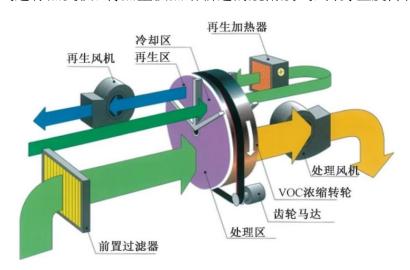


图6.2-2 沸石转轮吸附/脱附+CO设备示意图 表 6.2-2 分子筛转轮吸附浓缩与蜂窝活性炭吸附浓缩工艺对比

序号	项目	分子筛转轮吸附浓缩	固定床蜂窝炭吸附浓缩
1	吸附剂材料	沸石分子筛的原料为硅、 铝、氧等无机材料组成	活性炭的原料为富含碳的有 机材料,如煤、木材、果壳等
2	脱附温度	180~220℃ ,脱附温度高,脱附彻底	80~120℃,脱附温度低,脱附不完全彻底
3	净化效率	> 90% 稳定持续达标	<85% 持续下降
4	脱附速度	1.5m/s 脱附速度约为吸附速度的一半,脱附 彻底	0.45m/s 由于活性炭箱体结构限制,脱附速度是原来吸附速度的 20%,脱附存在偏流现象,脱附不彻底
5	脱附能力	沸点VOCs也经过高 温再生可以脱附, VOC 浓缩转轮浓缩的	沸点120℃以上高沸点 VOCs可以吸附,但无法 脱附(引起性能的下降)。 浓缩出来的VOCs浓度不 稳定(再生时稳定随着时间 逐渐的浓度下降)

本项目选用沸石分子筛作为吸附剂材料。通过提供废气处理设施设计方案(包括废气风量、VOCs组成和浓度、治理技术适用性、设计参数、同类项目同类技术实际处理效率等)论证其处理效率,本项目废气 VOCs产生浓度约为 50mg/m³,同类项目同类技术实际处理效率监测报告见附件 8(分别有佛山市顺德区大良现代塑料彩印有限公司、佛山市顺德区大东树脂有限公司和佛山市顺德区顺峰药品包装材料有限公司三家公司使用"旋转式分子筛吸附-脱附-CO"处理的废气处理前后监测报告),从附件 8 工程实例可得,通过合理工艺参数选择和设计,"旋转式分子筛吸附-脱附-CO"VOCs废气实际处理效率可达到 91.21%~97.13%,苯系物可达 96%以上。同时,根据《家具制造工业污染防治可行技术指南》(HJ 1180-2021):"家具制造工业采用的典型治理技术路线为"吸附浓缩+CO"。该技术反应温度低、不产生热力型氮氧化物,VOCs 去除效率通常可达 95%以上"。为保守起见,本项目"旋转式分子筛吸附-脱附-CO"VOCs、苯系物处理效率取 90%。

根据《排污许可证申请与核发技术规范 家具制造工业》(HJ 1027-2019)中木质家具使用"浓缩+燃烧/催化氧化"工艺处理有机废气为可行性技术,结合废气特性,本项目喷涂废气污染物浓度相对较高,采用沸石转轮吸附/脱附浓缩后,经 CO 系统处理为可行性技术。同时,废气处理设施需要考虑安全设计,进气颗粒物浓度、VOC 浓度要低于爆炸下限 25%。

结合项目实际情况,从本项目有机废气特征和处理效果的情况考虑,本项目油性油漆喷漆有机废气的治理工艺选择"沸石转轮吸附/脱附+CO"工艺。

6.2.1.2UV 油漆喷漆废气、胶水废气防治措施技术可行性分析

UV 油漆喷漆废气主要分为四部分:

- ①调漆的过程会挥发出少量有机废气及臭气浓度(UV 漆调漆废气与油性漆调漆废气一并收集处理);
 - ②喷漆过程会产生漆雾颗粒、有机废气及臭气浓度;
 - ③流平、固化过程油漆中有机溶剂挥发出的有机废气及臭气浓度;
 - ④喷枪擦拭清洗过程异丙醇挥发产生的有机废气及臭气浓度。

根据项目涂料成分分析,UV 喷漆废气主要污染物为漆雾(颗粒物)、总 VOCs、 臭气浓度。胶水废气主要污染物为总 VOCs、臭气浓度。

由于 UV 喷漆、胶水使用产生的有机废气较少,综合考虑技术经济可行性,本次选用"活性炭吸附"工艺处理 UV 喷涂、胶水使用产生的有机废气,说明如下。

吸附法:

吸附法是利用吸附剂(如活性炭、活性炭纤维、分子筛等)对废气中各组分选择性吸附的特点,将气态污染物富集到吸附剂上后再进行后续处理的方法,适用于低浓度有机废气的净化。活性炭是一种由含碳材料制成的外观呈黑色,内部孔隙结构发达、比表面积大、吸附能力强的一类微晶质碳素材料。活性炭材料中有大量肉眼看不见的微孔,1g活性炭材料中微孔的总内表面积可高达 700~2300m²。正是这些微孔使得活性炭能"捕捉"各种有毒有害气体和杂质。由于气相分子和吸附剂表面分子之间的吸引力,使气相分子吸附在吸附剂表面。吸附剂表面积愈大、单位质量吸附剂所能吸附的物质愈多。

采用活性炭进行有机废气的净化,其去除效率会因活性炭吸附废气的饱和程度而不同。活性炭吸附工艺属于成熟工艺,其工艺简单,安装维修方便,处理效率较高,在同类企业实践应用效果较好,因此具有技术经济可行性。本项目采用活性炭吸附法对 UV 喷漆及胶水使用产生的有机废气和臭气进行处理,项目定期对活性炭进行更换,以保证活性炭的吸附效率。

本项目挥发性有机物进口浓度不高,不超过 600mg/m³,活性炭吸附装置进气温度不超过 40°C,根据上文核算,进入吸附设备的废气颗粒物含量低于 1mg/m³ 且废气不含有低沸点、易溶于水等物质组分。综合分析,本项目适用活性炭吸附工艺。鉴于蜂窝状活性炭存在吸附效能不足、更换频次高、结构强度低、易破碎、来回运输损耗大、难以有效再生回用、包括危废处置在内的综合成本高等问题,本项目使用颗粒状活性炭进行有机废气吸附处理,并采用适用于颗粒炭的炭箱设计及组合式置炭抽屉,以便拆卸便捷、批量更换再生后回用,在提高废气处理效能的同时,积极降低综合换炭成本。

本项目拟采用抽屉式箱体,根据《佛山市生态环境局关于加强活性炭吸附工艺规范化设计建设与运行管理的通知》(佛环函〔2024〕70号〕和《挥发性有机物无组织排放控制标准》(GB 38722-2019),"采用外部集气罩的,距集气罩开口面最远处的 VOC 无组织排放位置,控制风速不低于 0.3m/s",本项目喷胶废气集气罩的控制风速为 0.3m/s,符合要求。"废气收集系统的输送管道应密闭。废气收集系统应在负压下运行,若处于正压状态,应对输送管道组件的密封点进行泄漏检测,泄漏检测值不应超过 500 μmol/mol,亦不应有感官可察觉泄漏",本项目 UV 喷漆废气收集系统的输送管道密闭,且在负压下运行,符合要求。

根据《吸附法工业有机废气治理工程技术规范》(HJ 2026-2013),进入活性炭箱的废气颗粒物含量宜低于 1mg/m³、温度宜低于 40°C、相对湿度宜低于 70%、有机物的浓度应低于其爆炸极限下限的 25%。

根据《吸附法工业有机废气治理工程技术规范》(HJ 2026-2013)中 6.3.3.3 采用颗粒状吸附剂时,气体流速宜低于 0.60m/s; 废气停留时间保持 0.5~1s; 装填厚度不宜低于 300mm,本项目气流流速 v 取 0.60m/s,废气停留时间取 0.5s,填装厚度取气体流速*停留时间,即 0.6*0.5=0.3m=300mm,炭箱设计参数见表 6.2-3~表 6.2-6,根据计算可知,项目活性炭箱体装炭总量为 36.576t/a,废活性炭产生量为 39.598t/a。

表 6.2-3 活性炭炭箱设计参数一览表-G4 排气筒

设施名称	参数指标		主要参数		单位
	排气筒		/		
	设计风量	15000			m ³ /h
	活性炭类型		颗粒状		/
	所需过炭面积		6.94		m ²
	设计过炭面积		7.2		m ²
	设计抽屉个数		24		个
	设计抽屉尺寸	600	500	300	mm*mm*mm
	设计炭箱装置尺寸	5850	2515	2100	mm*mm*mm
活性炭吸	设计活性炭尺寸	1500	2400	600	mm*mm*mm
附装置	活性炭密度	400			kg/m ³
INVE	活性炭碘值:≥	800		mg/g	
	BET 比表面积: ≥	850		m ² /g	
	过滤风速(<1.2m/s)	0.579		m/s	
	停留时间(0.5~1.0s)		0.518		S
	活性炭数量		0.864		t
	更换频次(500h 或 3 个月)		4		次/年
	活性炭设计使用量	3.456		t/a	
	VOCs 物质-吸附设计量		0.518		t/a
	VOCs 物质-吸附需求量		0.091		t/a

设施名称	参数指标	主要参数	单位
	废活性炭产生量	3.547	t/a

表 6.2-4 活性炭炭箱设计参数一览表-G10 排气筒

设施名称	参数指标	主要参数			单位
	排气筒	G10			/
	设计风量	15000			m ³ /h
	活性炭类型	颗粒状			/
	所需过炭面积	6.94			m ²
	设计过炭面积	7.2			m ²
	设计抽屉个数	24			个
	设计抽屉尺寸	600	500	300	mm*mm*mm
	设计炭箱装置尺寸	5850	2515	2100	mm*mm*mm
	设计活性炭尺寸	1500	2400	600	mm*mm*mm
活性炭吸	活性炭密度	400			kg/m ³
附装置	活性炭碘值:≥	800			mg/g
	BET 比表面积: ≥	850			m ² /g
	过滤风速(<1.2m/s)	0.579			m/s
	停留时间(0.5~1.0s)	0.518			S
	活性炭数量	0.864			t
	更换频次(500h 或 3 个月)	4			次/年
	活性炭设计使用量	3.456			t/a
	VOCs 物质-吸附设计量	0.518			t/a
	VOCs 物质-吸附需求量	0.091			t/a
	废活性炭产生量		3.547		t/a

表 6.2-5 活性炭炭箱设计参数一览表-G13 排气筒

设施名称	参数指标	主要参数			单位
	排气筒	G13			/
	设计风量	48000			m ³ /h
	活性炭类型	颗粒状			/
	所需过炭面积	22.22			m^2
	设计过炭面积	24			m ²
	设计抽屉个数	80			个
	设计抽屉尺寸	600	500	300	mm*mm*mm
活性炭吸	设计炭箱装置尺寸	14050	4995	2100	mm*mm*mm
附装置	设计活性炭尺寸	2500	4800	600	mm*mm*mm
III	活性炭密度	400			kg/m ³
	活性炭碘值: ≥	800			mg/g
	BET 比表面积: ≥	850			m ² /g
	过滤风速(<1.2m/s)	0.556			m/s
	停留时间(0.5~1.0s)	0.540			S
	活性炭数量	2.880			t
	更换频次(500h或3个月)	10			次/年
	活性炭设计使用量	28.800			t/a

设施名称	参数指标	主要参数	单位
	VOCs 物质-吸附设计量	4.320	t/a
	VOCs 物质-吸附需求量	2.810	t/a
	废活性炭产生量	31.610	t/a

表 6.2-6 活性炭炭箱设计参数一览表-G14 排气筒

设施名称	参数指标	主要参数			单位
	排气筒	G14			/
	设计风量	3000			m ³ /h
	活性炭类型	颗粒状			/
	所需过炭面积	1.39			m ²
	设计过炭面积	1.8			m ²
	设计抽屉个数	6			个
	设计抽屉尺寸	600	500	300	mm*mm*mm
	设计炭箱装置尺寸	1650	1895	2100	mm*mm*mm
	设计活性炭尺寸	500	1800	600	mm*mm*mm
活性炭吸	活性炭密度	400			kg/m³
附装置	活性炭碘值: ≥	800			mg/g
	BET 比表面积: ≥	850			m ² /g
	过滤风速(<1.2m/s)	0.463			m/s
	停留时间(0.5~1.0s)	0.648			S
	活性炭数量	0.216			t
	更换频次(500h或3个月)	4			次/年
	活性炭设计使用量	0.864			t/a
	VOCs 物质-吸附设计量	0.130			t/a
	VOCs 物质-吸附需求量	0.030			t/a
	废活性炭产生量	0.894			t/a

活性炭装置设计、运行要求:

- (1) 活性炭箱体设计应符合下述要求:
- ①活性炭箱内部结构应设计合理,气体流通顺畅、无短路、无死角。活性炭吸附装置的门、焊缝、管道连接处等均应严密,不得漏气,所有螺栓、螺母均应经过表面处理,连接牢固。金属材质装置外壳应采用不锈钢或防腐处理,表面光洁不得有锈蚀、毛刺、凹凸不平等缺陷。
- ②排放风机宜安装在吸附装置后端,使装置形成负压,尽量保证无污染气体泄漏到 设备箱罐体体外。
- ③活性炭吸附装置应设置铭牌并张贴在装置醒目位置,内容应包含环保产品名称、型号、风量、活性炭类型、装填量、装填方式、设计更换周期等内容。
 - ④同时,废气处理设施需要考虑安全设计,进气颗粒物浓度、VOC 浓度要低于爆炸

下限 25%。

(2) 活性炭品质要求

- ①活性炭品质是衡量活性炭吸附工艺有效性的关键参数,为确保治理效率,用于吸附治理的活性炭质量应满足如下基本条件:颗粒活性炭碘吸附值≥800mg/g,BET 比表面积>850m²/g。
- ②选择活性炭供应商时,应要求供应商提供由国家相应检验机构出具的带有产品碘值、比表面积等性能参数的质量证明文件。同时,排污单位可通过选择呈墨黑色、手感轻、等体积重量小的活性炭产品、或入水试验中入水缓慢、吸水后排出细小的气泡并发出持续的"嘶嘶"声的活性炭产品等方法简单判断活性炭质量的优劣。
 - ③排污单位应保存所购活性炭厂家关于活性炭碘值、比表面等相关证明材料备查。
 - (3) 采样口相关要求
- ①应在活性炭吸附装置进气和出气管道上设置采样口,采样口设置应符合相关技术规范要求,便于日常监测活性炭吸附效率。
- ②自动监测断面和手工监测断面设置位置应满足,其按照气流方向的上游距离弯头、阀门、变径管≥4倍烟道直径,其下游距离上述部件≥2倍烟道直径。
- ③采样平台高于地面时,有通往平台的 Z 字梯/旋梯/升降梯等易于人员到达的监测 安全通道。

(4) 更换频次管理要求

活性炭每个更换周期内应当予以全部更换。活性炭箱体因空间、承重而造成实际体积小于规范参数设计要求的,应当等比例加大换炭频次,累计换炭量应不少于规范参数炭箱每个更换周期换炭量。排污单位应定期检测活性炭吸附装置废气出口挥发性有机物浓度,当出口污染物浓度超过规定排放限值的70%时,应及时更换新活性炭。

(5) 安全生产管理要求

- ①为规范活性炭安全生产管理,每个活性炭箱体应安装1个压差计,测量活性炭箱体两侧压力差,当压力差增大到限值,应更换活性炭;
- ②每个活性炭箱体应安装 1 个温度传感器,检测进气温度(活性炭箱体要求进气温度不大于 40°C)。当进气温度异常时,强制措施一般包括:停止风机、关闭炭箱进风口、废气紧急排放启动等。
- ③单独活性炭吸附工艺必须安装在进风风管。当活性炭箱内部温度正常时,防火阀常开; 当通过活性炭箱的气体温度升高至防火阀限值(65~80℃),防火阀关闭。防火

阀为一次性保护措施,如使用应及时更换。

- ④进入活性炭吸附装置的废气中有机物的浓度应低于其爆炸极限下限的25%。
- (6) 活性炭更换操作要求
- ①活性炭更换前应关闭整套废气处理系统,将系统的压力降为零。必要时应结合活性炭更换对废气收集处理系统进行检修。
- ②取出活性炭时,观察设备内部是否积水、积尘、破损,活性炭表面是否覆盖粉尘等情况,如有,应尽快对预处理系统进行保养。
 - ③颗粒活性炭应装填齐整,避免气流短路。
 - ④活性炭装填完毕后,连接部位必须拧紧,并应进行气密性检查。
 - (7) 运行与维护相关要求
- ①企业应做好活性炭吸附装置运行状况、设施维护、活性炭更换记录,建立管理台账,相关记录至少保存三年,现场保留不少于一个月的台账记录。主要记录内容包括:
 - a) 活性炭吸附装置的启动、停止时间;
 - b)活性炭的质量分析数据、采购量、使用量、更换量与更换时间。
- c)活性炭吸附装置运行工艺控制参数,至少包括设备进、出口浓度和吸附装置内温度;
 - d) 主要设备维修情况,运行事故及维修情况:
 - e) 定期检验、评价及评估情况。
- ②企业应当按照排污许可证和排污单位自行监测技术指南中监测位置、指标和频次的要求定期对活性炭吸附装置进行自行监测,相关记录至少保存三年。
- ③维护人员应根据计划定期检查、维护和更换必要的部件和材料,保障活性炭在低颗粒物、低含水率条件下使用。
- ④更换下来的活性炭应装入闭口容器或包装物内贮存,并按照危险废物有关要求进 行管理处置。
- ⑤操作及维护人员应按照安全操作规程正确使用及维护活性炭吸附装置,并熟悉活性炭吸附装置突发安全事故应对措施,保证装置的安全性。
- 综上,该废气治理设施满足能够满足活性炭设计处理效率60%的要求,也能满足对活性炭吸附装置基本参数要求。

小结:

根据《家具制造工业污染防治可行技术指南》(HJ 1180-2021),湿式除尘技术有

水帘柜、喷淋塔等,适用于涂装工序漆雾的治理及 VOCs 末端治理的预处理,一般采用多级处理设施串联使用,除尘效率通常可达 99.5%以上,是处理涂装工序漆雾的污染防治可行技术。

参照《排污许可证申请与核发技术规范 家具制造工业》(HJ1027-2019)和《广东省家具制造行业挥发性有机废气治理技术指南》,沸石转轮吸附/脱附+CO、活性炭吸附处理喷漆工序的有机废气均是污染防治可行技术,因此,本项目采用以上工艺处理喷漆有机废气在技术上是可行的。

6.2.1.3 打磨房废气防治措施技术可行性分析

本项目采用水帘柜对木磨、油磨颗粒进行处理,其工作原理如下:

项目木磨粉尘、油磨粉尘在排风机引力的作用下向水帘柜的内壁水幕板方向流动,一部分漆雾及打磨粉尘直接接触到水幕板上的水膜而被吸附,一部分漆雾及打磨粉尘在经过水幕板上淌下的水帘时被冲刷掉,其余未被捕捉到的漆雾及打磨粉尘在通过蜗壳水帘区时被清洗掉。水流将漆雾及打磨粉尘冲刷带入水箱中,达到去除效果;系统内的水由水泵提升到水幕及多级水帘过滤器项的溢水槽,溢流到水幕板上形成水帘。另外,需要定期清理循环系统内的沉渣,避免沉渣过多堵塞进出水口造成处理效率下降,打磨房示意图如下:

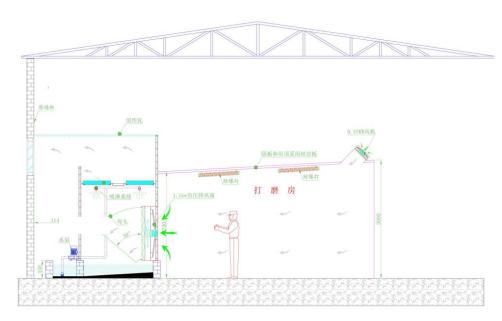


图 6.2-3 打磨房示意图

根据《家具制造工业污染防治可行技术指南》(HJ 1180-2021),漆面打磨工序产生的颗粒物亦可采用湿式除尘技术进行处理,一般采用水帘柜,除尘效率通常可达 85%

以上,是处理涂装工序漆雾的污染防治可行技术。同时,根据《排污许可证申请与核发技术规范 家具制造工业》(HJ 1027-2019),水帘过滤亦为处理涂装废气中颗粒物的污染防治可行技术。项目打磨房废气经水帘柜处理后引至排气筒高空排放,厂界无组织排放颗粒物预计可达到广东省《大气污染物排放限值》(DB44/27-2001)第二时段颗粒物无组织排放标准较严值的要求,对项目最近敏感点及周围环境的影响不大,因此,本项目采用以上工艺处理打磨房废气在技术上是可行的。

6.2.1.4 木工粉尘防治措施技术可行性分析

本项目对原材料板材进行开料、打眼等木加工机械加工过程中会产生一定量的木屑粉尘,其主要污染因子为颗粒物。项目拟在每台产污设备或工位分别设置集气管,集气管与各设备直接连接,木工粉尘收集并经"布袋除尘器"处理后引至 40m 排气筒 G2、G6、G8、G12 排放。

脉冲式布袋除尘器工作原理:一种干式除尘装置,适用于捕集细小、干燥、非纤维性粉尘。设备在系统主风机的作用下,含尘气体从流经管道进入除尘器,吸附在滤袋的外表上,滤袋采用高密度防静电针织毡,利用纤维织物的过滤作用对含尘气体进行过滤,当含尘气体进入布袋除尘器,颗粒大、比重大的粉尘,由于重力的作用沉降下来,落入灰斗,含有较细小粉尘的气体在通过滤料时,粉尘被阻留,使气体得到净化,过滤后干净的气体透过滤袋进入上箱体从排风口排出。随着过滤工况持续,积聚在滤袋外表面上的粉尘将变多,利用压缩空气对布袋除尘器的布袋进行脉冲清灰,减小布袋除尘器的阻力,再经卸灰装置将拦截的粉尘清出除尘器。

《袋式除尘工程通用技术规范》(HJ 2020-2012)的有关要求包括:

- 1、袋式除尘器不得设置旁路;
- 2、袋式除尘工艺官采用负压系统,特殊情况下可采用正压系统。

结合本项目的实际情况,本项目脉冲布袋除尘系统没有设置旁路;脉冲布袋除尘系统工艺采用负压系统,则本项目脉冲布袋除尘系统符合上述条款的规定。另外本环评还要求建设单位严格按照《袋式除尘工程通用技术规范》(HJ 2020-2012)有关袋式除尘器检测与过程控制、运行与维护等有关规定进行日常的管理和维护,在此基础上,本项目木屑粉尘采用脉冲式布袋除尘器处理木工粉尘在技术上是可行的。

根据《家具制造工业污染防治可行技术指南》(HJ 1180-2021)及《排污许可证申请与核发技术规范 家具制造工业》(HJ 1027-2019),本项目采用的袋式除尘技术是废

气治理可行技术。袋式除尘技术可作为木质家具制造企业机加工、漆面打磨等工序的除尘技术,袋式除尘技术性能稳定可靠、操作简单,除尘效率通常可达 99%以上。项目木工粉尘经脉冲布袋除尘器处理后经排气筒排放,有组织排放颗粒物预计可达到广东省《大气污染物排放限值》(DB44/27-2001)第二时段颗粒物二级标准要求,厂界无组织排放颗粒物预计可达到广东省《大气污染物排放限值》(DB44/27-2001)第二时段颗粒物无组织排放标准较严值的要求,对周围大气环境影响很小。因此,本项目采用以上工艺处理木工粉尘废气在技术上是可行的。

6.2.1.5 臭气防治措施技术可行性分析

本项目生产车间会产生少量恶臭,主要来自喷漆、胶水使用等工序,厂房二油性漆喷漆废气收集并经水帘柜除漆雾,然后和烘干废气一起通过"二级水喷淋+干式过滤+沸石转轮吸附-脱附+催化燃烧"废气处理设施进行处理,处理后引至 40m 排气筒 G1 排放,厂房二 UV 漆喷涂废气收集并经过滤棉除漆雾,然后和烘干废气一起通过"水喷淋+干式过滤器+活性炭吸附"废气处理设施进行处理,处理后引至 40m 排气筒 G13 排放;厂房三油性漆喷漆废气收集并经水帘柜除漆雾,然后和烘干废气一起通过 2 套"二级水喷淋+干式过滤"处理后一并经"沸石转轮吸附-脱附+催化燃烧"废气处理设施进行处理,处理后引至 40m 排气筒 G7 排放,胶水废气收集并经"活性炭吸附"处理后引至 40m 排气筒 G4、G10、G14 排放。生产过程外逸的臭气很少,通过合理布局生产车间、加强管理,完善废气收集措施,减少生产车间臭气散发,臭气浓度可达到《恶臭污染物排放标准》表 1 恶臭污染物厂界标准值二级新扩改建标准。

6.2.2 大气污染防治措施经济可行性分析

本项目废气治理措施投资约 1040 万元,占项目总投资的 3.4%,比例较小。因此,本项目大气污染防治措施从经济角度考虑,是可以接受的,在经济上具有可行性;废气防治措施每年运行及维护费用约 200 万元,占该厂年产值(约 20000 万元人民币)的 1%,比例较小。因此,本项目大气污染防治措施从经济角度考虑,是可以接受的,在经济上具有可行性。

6.3 噪声污染防治措施及其经济、技术论证

噪声属于物理性污染,其污染状况与噪声源、传播途径、接受者均有一定的关系。

噪声传播途径包括反射、衍射等形式的声波行进过程。噪声控制的原理,也就是在噪声到达接受者之前,采用阻尼、隔声、消声器、个人防护和建筑布局等几大措施,尽量减弱或降低声源的振动,或将传播中的声能吸收掉,使声音全部或部分反射出去,减弱噪声对接受者的影响,这样则可达到控制噪声的目的。

本项目产生的噪声主要来自生产过程中主体工程设备运转时产生的噪声,以及辅助设备如空压机、各种风机等运转时产生的噪声,其噪声级约为60~90dB(A)。

6.3.1 噪声污染防治措施技术可行性分析

项目采取的噪声防治措施主要有:

1、合理布局

- (1)项目主要的生产设备均设置在车间内,加强车间的密闭性,通过车间实体墙壁、窗户的隔声作用减少机械噪声对外传播;
 - (2) 本项目厂区办公区与生产区分开设置,可以减少员工受设备噪声影响;
- (3)根据现场考察,本项目周边主要为工业厂房、道路等,项目用地为工业用地,最近的敏感点为光华村,距离本项目厂界约 250m,距离较远,设备运行噪声经沿途的厂房等构筑物阻隔、距离衰减后得到大幅度衰减。
 - 2、选择低噪声设备

在满足工艺设计的前提下,尽量选用满足国际标准的低噪声、低振动型号的设备,如低噪声的风机,降低噪声源强。

3、隔声、减振或加消声器

根据噪声产生的性质可分为机械运动噪声及空气动力性噪声,根据其产生的性质和 机理不同,部分设备采用了隔声、减振或加消声器等方式进行了降噪处理。

本项目设备噪声治理措施如下:

- (1) 合理的风管管径和风速设计,减少管路的振动;
- (2) 在风机外安装隔声罩或在排风口上安装消声器:
- (3) 各设备加装减振垫。

4、厂区绿化

加强绿化,在车间外侧的空地设置绿化带,增加对噪声的阻尼作用。项目绿化以灌木和草坪为主,有效降低噪声强度。

5、强化生产管理

确保降噪设施的有效运行,并加强对生产设备的保养、检修与润滑,保证设备处于

良好地运转状态。

项目采取的措施符合噪声防治原则,技术也比较成熟,采取措施后,本项目厂界噪声可达到《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准,对周围声环境影响不大,降噪措施在技术上是可行的。

6.3.2 噪声污染防治措施经济可行性分析

本项目噪声治理设施投资约 20 万元,占项目总投资的 0.07%,噪声治理设施每年维护费用约 2 万元,占该厂年产值(约 20000 万元人民币)的 0.01%,比例很小。因此,本项目噪声污染防治措施从经济角度考虑,是可以接受的,在经济上具有可行性。

6.4 固体废物污染防治措施及其经济、技术论证

对固体废物的污染防治,管理是关键。目前,国际上公认的对固体废物的环境管理原则有两项,即"三化"(减量化、资源化、无害化)原则和全过程管理原则,很多具体的管理原则措施都源于这两条基本原则。

6.4.1 一般工业固体废物污染防治措施分析

本项目的一般工业固体废弃物为可资源化废物,应考虑回收和综合利用。木边角料、布袋收集的粉尘、喷淋沉渣(金属粉尘)、地面清扫粉尘、一般原料废包装物、布料、真皮边角料、废布袋等分类收集后交由资源回收单位回收利用。建设单位拟在厂房二设置一个用于暂存一般工业固废的区域。

此外,厂内一般工业固废临时贮存应采取如下措施:

- 1)对一般工业固体废物实行从产生、收集、运输、贮存直至最终处理实行全过程管理,加强固体废物运输过程的事故风险防范,按照有关法律、法规的要求,对固体废弃物全过程管理应报当地环保行政主管部门等批准。
- 2)加强固体废物规范化管理,固体废物分类定点堆放,堆放场所远离办公及宿舍区。为了减少雨水侵蚀造成的二次污染,堆放场地应设置在室内或加盖顶棚,并做好防渗漏、防雨淋和防扬尘等措施。

6.4.2 危险废物污染防治措施分析

本项目危险废物主要有:废化学品包装桶、废抹布手套、废漆渣、废过滤棉、废活性炭、废润滑油和废润滑油桶、废催化剂、废沸石等。危险废物危害性较大,因此是本

项目固废管理的重点。根据前文分析,项目危险废物贮存场所基本情况详见下表。

序号	贮存场所 名称	危险废物 名称	危险废物类 别	危险废物代码	位 置	占地 面积	贮存方式	贮存能 力	贮存周 期		
1		废化学品 包装桶	HW49 其他 废物	900-041-49			直接分类堆放		3个月		
2		废抹布手 套	HW49 其他 废物	900-041-49			装入专门存放废抹布 手套的容器内		3个月		
3		废漆渣	HW12 染料、 涂料废物	900-252-12	危		装入专门存放废漆渣 的容器内		3个月		
4	危险废物	废过滤棉	HW49 其他 废物	900-041-49	险废	10 5m	装入专门存放废过滤 棉的容器内		3个月		
5	暂存间	废活性炭	HW49 其他 废物	900-039-49	物 暂	42.3III 2	装入专门存放废活性 炭的容器内	100t	3个月		
6		废润滑油 和废润滑 油桶	HW08 废矿 物油与含矿 物油废物	900-249-08	存间				装入专门存放废润滑 油的容器内		3个月
7		废沸石	HW49 其他 废物	900-039-49			装入专门存放废沸石 的容器内		5年		
8		废催化剂	HW50 废催 化剂	772-007-50			装入专门存放废催化 剂的容器内		2年		

表 6.4-1 建设项目危险废物贮存场所基本情况表

建设单位应加强危险废物的管理,必须交由有资质的危险废物处理处置中心进行安全处置,对废物的产生、利用、收集、运输、贮存、处置等环节都要有追踪的账目和手续,由专用运输工具运至有资质的单位进行焚烧或无害化处置,使本项目固体废弃物由产生至无害化的整个过程都得到控制,保证每个环节均对环境不产生污染危害。

为了防止二次污染,本项目规划在项目厂房三设置一个储存室作为危险固体废物的暂存场,可避免随风吹散或雨水冲刷产生污水,该危险固体废物暂存场的地面需做水泥硬底化防渗处理。本环评要求危险废物暂存场按照但不限于《危险废物贮存污染控制标准》(GB18597-2023)中的相关规范建设。

(1) 一般措施

- ①对所有的危险废物应按照《危险废物贮存污染控制标准》(GB18597-2023)中的相关规范建设专用的危险废物贮存场所(设施)。建设单位建设专用于危险废物暂存的存放室,该存放室干燥、阴凉,可避免阳关直射危险废物,地面硬底化,地面进行防渗处理,满足防风、防雨、防晒、防渗漏的"四防"要求。
- ②危险废物设置不同的贮存分区,废化学品包装物、废润滑油桶可在暂存场内分类 堆放,废抹布手套、废漆渣、UV 喷涂室废过滤棉、废活性炭、废润滑油等必须装入容 器内。无法装入常用容器的危险废物可用防漏胶袋等盛装。
 - ③贮存场所地面、墙面裙脚、堵截泄漏的围堰、接触危险废物的隔板和墙体等应采

用坚固的材料建造,表面无裂缝。

- ④贮存设施地面与裙脚应采取表面防渗措施;表面防渗材料应与所接触的物料或污染物相容,可采用抗渗混凝土、高密度聚乙烯膜、钠基膨润土防水毯或其他防渗性能等效的材料。
- ⑤同一贮存设施宜采用相同的防渗、防腐工艺,防渗、防腐材料应覆盖所有可能与废物及其渗漏液等接触的构筑物表面;采用不同防渗、防腐工艺应分别建设贮存分区。
 - ⑥贮存设施应采取技术和管理措施防止无关人员进入。
- ⑦在贮存库内或通过贮存分区方式贮存液态危险废物的,应具有液体泄漏堵截设施,堵截设施最小容积不应低于对应贮存区域最大液态废物容器容积或液态废物总储量 1/10(二者取较大者)。液态危险废物必须装入加盖容器内,并设置防泄漏托盘、收集沟等堵截设施。
 - (2) 危险废物贮存容器
 - ①容器和包装物材质、内衬应与盛装的危险废物相容。
- ②针对不同类别、形态、物理化学性质的危险废物,其容器和包装物应满足相应的 防渗、防漏、防腐和强度等要求。
 - ③硬质容器和包装物及其支护结构堆叠码放时不应有明显变形,无破损泄漏。
 - ④柔性容器和包装物堆叠码放时应封口严密,无破损泄漏。
- ⑤使用容器盛装液态、半固态危险废物时,容器内部应留有适当的空间,以适应因温度变化等可能引发的收缩和膨胀,防止其导致容器渗漏或永久变形。
 - ⑥容器和包装物外表面应保持清洁。
- (3)危险废物贮存设施都必须按《危险废物识别标志设置技术规范》(HJ 1276-2022)、《环境保护图形标志-固体废物贮存(处置)场》(GB 15562.2-1995)及 其修改单的规定设置警示标志。危险废物贮存设施应配备通讯设备、照明设施、安全防护服装及工具,并设有应急防护设施。危险废物贮存设施内清理出来的泄漏物,一律按 危险废物处理。

建设单位应加强危险废物的管理,必须交由有资质的危险废物处理处置中心进行安全处置,对废物的产生、利用、收集、运输、贮存、处置等环节都要有追踪的账目和手续,由专用运输工具运至有资质的单位进行焚烧或无害化处置,使本项目固体废弃物由产生至无害化的整个过程都得到控制,保证每个环节均对环境不产生污染危害。

6.4.3 生活垃圾污染防治措施分析

生活垃圾中的成分比较复杂,包括食物垃圾、废纸、杂品、玻璃等,其中部分是可以回收利用的。生活垃圾除一部分会有异味或恶臭外,还有很大部分会在微生物和细菌的作用下发生腐烂,也成为蚊蝇滋生、病菌繁殖、老鼠肆虐的场所,因此本项目产生的生活垃圾应收集到规定的垃圾桶,不能随意丢弃至厂区周边,生活垃圾(含餐厨垃圾)委托环卫部门每天统一清运。

6.4.4 固废污染防治措施小结

本着追求社会效益、经济效益和环境效益统一的原则,在固废处置上具有较好的可操作性的,均采取合理、恰当的治理措施可使固体废物得到"减量化、资源化、无害化"利用和处置方式,阅生活公司对固体处理处置原则为:有回收利用价值的一般固废尽量充分循环利用或外卖重新利用,无回收利用价值的一般固废委托环卫部门统一清运填埋,属于外运处置的危废委托有资质的单位统一收集处置。本项目大部分固废可做到资源回收利用,因此,本环评认为上述固废防治措施是可行的。

本项目固体废物处理设施如生活垃圾桶、一般固废暂存场及危险废物暂存场的设置、地面硬底化防渗等投资费用约 30 万元,占项目总投资的 1%;固体废物年处理费用约 80 万元,占该厂年产值(约 20000 万元人民币)的 0.4%,比例较小。因此,本项目固体废物污染防治措施从经济角度考虑,是可以接受的,在经济上具有可行性。

6.5 土壤环境防治措施可行性

土壤污染主要来自废水、废气、固体废物污染,重在预防,污染后的修复成本十分高昂。为有效防治土壤环境污染,项目运营期应采取以下防治措施:

- 1、生产中严格落实废水收集措施。厂区设置事故应急水池(地下停车库),厂区发生火灾爆炸事故时,将消防废水转移至事故应急水池暂存,故障、事故解除后妥善处理,禁止将未经有效处理的废污水外排。生产中加强废水收集、输送管道巡检,发现破损后采取堵截措施,将泄漏的废污水控制在厂区范围内,并妥善处理、修复受到污染的土壤。
- 2、原料及产品转运、贮存等各环节做好防风、防水、防渗措施,避免有害物质流失,禁止随意弃置、堆放、填埋。固体废物应分类收集暂存。

3、厂区分区防渗,加强地下水环境跟踪监测,一旦发现地下水发生异常情况厂区 分区防渗,必须马上采取紧急措施。

按照有关的规范要求采取上述污染防渗措施,可以避免项目对周边土壤产生明显影响,营运期土壤污染防治措施是可行的。

6.6 地下水污染防治措施可行性

针对项目污染途径,按照"源头控制、分区防控、污染监控、应急响应"的原则,本评价建议采取以下措施加强对地下水污染的防治:

1、源头控制

- (1) 定期检修本项目范围内的污水管网,防止污水跑、冒、滴、漏;埋地的管网要设计合适的承压能力,防止因压力而爆裂,造成污水横流;定期检查维护集排水设施和处理设施,发现集排水设施不通畅须及时采取必要措施封场;
- (2)加强管理,油漆、固化剂、稀释剂、胶粘剂等原辅料应采用原装容器妥善存放,防止容器破裂或倾倒,造成泄漏,储存室地面须做水泥硬化防渗处理。

2、分区防控

项目可能造成的地下水污染的途径主要为生产过程中的跑、冒、滴、漏以及池体、管道泄漏,项目严格规范生产操作,定期检查池体及污水管网情况,可较为及时发现和处理地下水环境可能造成的污染事故。本项目污染控制难易程度较易。本项目水污染物主要为非持久性污染物,不含重金属及持久性有机物,根据《环境影响评价技术导则 地下水环境》(HJ610-2016)"表7地下水污染防渗分区参照表",本项目不涉及重点防渗区。

根据《环境影响评价技术导则 地下水环境》(HJ610-2016)"表 7 地下水污染防渗分区参照表",项目喷淋废水池、喷漆车间、危废仓库、事故应急处理设施等区域属于一般防渗区,场地防渗要求为"等效黏土防渗层 Mb≥1.5m,K≤1×10⁻⁷cm/s;或参照 GB16889 执行";其余区域属于"简单防渗区",须对场地进行一般的地面硬化防渗,建议厂区的路面采取粘土铺底,再在上层铺 10-15cm 的水泥进行硬化。项目分区防渗详见图 6.6-1。

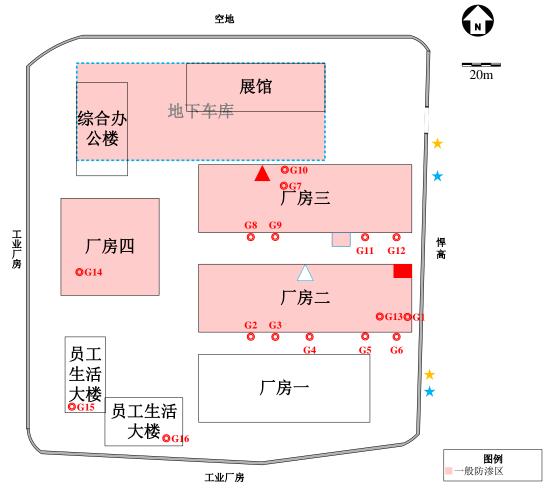


图 6.6-1 项目分区防渗图

除一般的地面硬化防渗,建议项目按照规范严格进行池体、专用房间的建设:

- (1) 有机废水收集池、化粪池、隔油隔渣池等池体应做好防震、防渗漏措施,池体建议用水泥硬化防渗或者采用防腐的钢结构池体,水泥池内壁抹灰全部抹上。
- (2)对化学品仓做防腐、防渗处理,防渗层为至少 2mm 厚高密度聚乙烯,或至少 2mm 厚的其他人工材料,渗透系数≤10⁻¹⁰cm/s;并设置围堰。
- (3)本项目规划在厂房三设置一个专用的房间作为危险废物暂存场,用于危险废物的暂存。本评价要求建设单位严格按照《危险废物贮存污染控制标准》(GB18597-2023)进行危险废物堆场的设置:
 - ①地面与裙脚要用坚固、防渗的材料建造;
 - ②衬里要能覆盖危险废物或其溶出物可能涉及的范围;
- ③危险废物堆场应设置盖顶,要防风、防雨、防晒,要保证能防止暴雨不会流到危险废物堆里;
 - ④不相容的危险废物不堆放在一起。

- (5) 生产车间内地面作水泥硬化防渗处理,一方面便于清洁,另一方面亦可防止 生产时液态原材料因滴漏到地面造成下渗。
 - (6) 生活垃圾应采用加盖的垃圾桶分类收集,上部应有遮顶,防止雨水淋滤。

3、污染监控

为落实好地下水环境污染防治,应建立地下水环境监测管理体系:制定地下水环境影响跟踪监测计划、建立地下水环境影响跟踪监测制度、配备先进的监测仪器和设备等。

鉴于地下水采样人员应具备专业的知识,进行规范操作,以保证取样结果的真实性,同时防止取样过程中不对地下水环境造成污染;地下水监测仪器设备要求相对比较高,技术难度也较大,因此,项目地下水环境影响跟踪监测工作可由当地环境监测站按当地污染源管理监测的要求定期进行。

4、应急响应

项目可能造成的地下水污染的途径主要为生产过程中的跑、冒、滴、漏以及池体、管道泄漏。当项目地下水污染事故发生时,项目应马上停止相关作业,关闭废水排污口,进行泄漏点的排查。待相关救援工作结束后,方可重新投入正常生产使用。

采取上述措施后,本项目营运期基本不会对地下水水质造成影响。

6.7 土壤污染防治措施可行性

土壤污染主要来自废气、固体废物污染,重在预防,污染后的修复成本十分高昂。为有效防治土壤环境污染,项目运营期应采取以下防治措施:

- 1、生产中严格落实废水收集、治理措施。厂区设置事故应急水池,厂区发生火灾爆炸事故时,将消防废水转移至事故应急水池暂存,故障、事故解除后妥善处理,禁止将未经有效处理的废污水外排。生产中加强废水收集、输送管道巡检,发现破损后采取堵截措施,将泄漏的废污水控制在厂区范围内,并妥善处理、修复受到污染的土壤。
- 2、严格落实废气污染防治措施,加强废气治理设施检修、维护,使大气污染物得到有效处理,减少粉尘等污染物干湿沉降。
- 3、原料及产品转运、贮存等各环节做好防风、防水、防渗措施,避免有害物质流失,禁止随意弃置、堆放、填埋。固体废物应分类收集暂存,严格按照《危险废物贮存污染控制标准》(GB18597-2023)对危险废物进行收集、暂存,并委托持有《危险废物经营许可证》的单位进行无害化处理处置。

4、厂区分区防渗,加强地下水环境跟踪监测,一旦发现地下水发生异常情况厂区 分区防渗,必须马上采取紧急措施。

按照有关的规范要求采取上述污染防渗措施,可以避免项目对周边土壤产生明显影响,营运期土壤污染防治措施是可行的。

6.8 生态保护措施

本项目运营期排放的废气扩散对区域内的生态植被造成影响,在采取有效的废气治理措施后,本项目排放的废气能够达到标准要求,并且浓度较低,不会对区域的生态环境造成明显不利影响。

此外,本项目陆域用地不涉及自然保护区、自然遗迹、人文遗迹、风景名胜区、珍稀或濒危野生动物栖息地等陆域生态敏感目标。因此,本项目的运营对陆生生态环境基本没有影响。建议建设单位加强绿化措施。在厂区内加强绿化措施,在生产区和办公区边界一定范围内建立一个绿化带,形成绿色植物隔离带,这样既可以起到水土保持和防止土壤侵蚀的作用,也可以吸附粉尘、净化空气,还可以美化环境。

6.9 治理措施可行性结论

通过以上治理措施论述,本项目采取的水、大气、噪声、固废、地下水、生态以及土壤污染防治措施均为可行的,同时本环评要求建设单位在日后的生产过程中严格监管废(污)水处理设施的各个环节,保证外排废(污)水达标;严格监管废气治理设施的正常运行,保证设施的去除效率;按照相关环保要求,针对噪声源实行隔声、减震、消声等措施;针对固废真正做到"减量化、资源化、无害化"的利用和处置;严格按照消防、安监部门要求做好风险防范措施,则本项目废水、废气、噪声、固废对周围环境的影响在可接受水平范围之内。

7环境影响经济损益分析

7.1 经济损益分析

7.1.1 直接经济效益分析

广东阅生活家居科技有限公司广东阅生活总部基地建设项目,位于广东省佛山市顺 德区杏坛镇光华村德彦大道1号之一,项目总投资30600万元,年产值20000万元。本项 目投资效益好,回收快,具有良好的经济效益,经济上可行。

7.1.2 间接经济效益分析

本项目生产在取得直接经济效益的同时,带来了一系列的间接经济效益:

- (1)本项目原辅材料、水、电、天然气以及污染物治理材料等的消耗为当地带来间接经济效益。
- (2)本项目作业机械设备及生产配套设备的购买使用,将扩大市场需求,会带来间接经济效益。
- (3)项目建成后能促进当地产业结构的合理调整,寻找新的经济增长点,增加财政税源,壮大地方经济。

7.2 社会损益分析

本项目符合国家的产业政策,项目采用先进生产工艺,生产出的产品具有较好的质量,项目产品市场发展前景十分广阔。本项目建成后将形成良好的社会效益,具体分析如下:

1、促进地方经济的发展

佛山市位于我国珠江三角洲,且交通便利,市场辐射面广,本项目位于广东省佛山市顺德区杏坛镇光华村德彦大道 1 号之一,本项目将优化当地产业结构体系,努力提高自主创新能力和大力地发展循环经济,增强项目建设所在地的经济实力,促进当地经济的发展;促进家具制造产业与城市、环境、资源和谐发展,促进产业链由低端向高端跃升。同时,本项目的建设还可增加地方税收,解决就业压力,稳定社会治安并带动相关产业的发展,社会效益比较明显。

2、增加劳动就业

本项目劳动定员800人,在一定程度上带动了本地区劳动就业,缓解了就业压力。 综上所述,本项目的建设不仅企业能获得较好的经济效益,而且具有一定的间接社 会效益。项目建设后能促进家具制造行业的发展,满足市场需求,将为当地提供就业机会,有利于促进当地经济发展,带动地方特色工业的发展。因此本项目的建设具有良好的社会经济效益。

7.3 环境损益分析

7.3.1 环保投资及运行费用分析

《建设项目环境保护设计规定》第六十三条指出:"凡属于污染治理和保护环境所需的装置、设备、监测手段和工程设施等均属于环境保护设施"、"凡有环境保护设施的建设项目均应列出环境保护设施的投资概算"。

根据本评价提出的环保措施,本项目的环保投资情况见下表。

序号		项目名称	费用(万 元)	治理措施
1	度水 生活污水、餐厨废水、喷淋废 水		30	三级化粪池、隔油隔渣池、工业废水收集 池及收集管道等
2	废气	喷漆废气	1040	木工粉尘处理设施、喷涂烘干废气处理设施、胶水废气处理设施、打磨废气处理设施。 施、五金抛光废气处理设施及收集管道等
3		减震、降噪等噪声治理	20	隔声、减震、安装消气器等
4		固废处置设施投资	30	一般固废、危险废物暂存场等设置
5	风险		20	雨水截止阀、风险防范物资等
		合计	1140	

表 7.3-1 本项目主要环境保护投资估算

本项目总投资约 30600 万元,由上表可以看出,根据环评提出的环保治理方案,估算环保投资额 1140 万元,占项目总投资的 3.73%,所占比例较为合理,污染物经治理后能达到相关的环保要求,环保投资较合理。

		******	, ,,, , , , , , , , , , , , , , , , , ,	
序号		项目名称	年运行费 用(万元)	备注(具体项目)
1	废水 生活污水预处理设施,有机废水 处理费用等		50	电费、维护费、污水处理费用
2	废气	喷漆废气、木工粉尘、打磨房废 气治理设施	200	废气治理设施、风机等运行、维护费用
3	减震	、降噪等噪声治理措施日常维护	2	隔声、减震、安装消声器等日常维护
4		固废处理处置投资	80	危险废物、一般工业废物、一般生活垃圾 等处理费用
5		环保人员	18	包括环保人员工资、培训,环保宣传、教 育
		合计	350	

表 7.3-2 本项目环保年运行、管理费用分析

本项目年总产值 20000 万元,由上表可以看出,环保设施的年运行、维护费用约 350 万元,占项目年总产值的 1.75%,占项目年生产总值的比例较低,在可以接受的范围内。

7.3.2 环境损益分析

项目环保措施主要是体现国家环保政策,贯彻"总量控制"和"污染物达标排放"的原则,达到保护环境的目的。本项目采用的废水、废气、噪声、固废等污染治理措施,达到了有效控制污染和保护环境的目的。环境保护投资的环境效益表现在以下方面:

- 1、通过环保投资,安装工业废水、废气处理设施,使废水及废气污染物总排放量 大为减少,能有效降低对周围人群健康的影响,避免企业与周围群众产生不必要的纠纷, 对保护区域环境空气质量有着重要意义。同时也可改善工厂的生产环境,提高生产效率。
- 2、噪声污染防治设施的建设可为企业职工创造一个良好舒适的工作环境,对企业的安全生产、提高劳动生产率能起到较大作用。
- 3、生产过程中产生的可利用固体废物收集后综合利用,实现了零排放,减轻了建设项目对环境的影响。危险废物有效处置,减轻了对环境的潜在危害影响,保障了阅生活公司和附近人民群众的生活环境和身体健康。

由此可见, 本项目采用相应环境保护措施后环境效益较显著。

7.4 结论

结合本工程的社会经济效益、环保投入和环境效益进行综合分析得出,项目在创造 良好经济效益和社会效益的同时,经采取污染防治措施后,对环境的影响较小,能够将 工程带来的环境损失降到可接受程度。因此,本项目可以实现经济效益与环保效益的相 统一,项目的建设从环境、经济效益角度而言是可行的。

8环境管理与监测计划

环境管理和环境监测是污染防治的重要内容之一,是实现污染总量控制和治理措施 达到预期治理的有效保证。项目建成投产后,除了依据环评中所评述和建议的环境保护 措施实施的同时,还需要加强环境管理和环境监测工作,以便及时发现装置运行过程中 存在的问题,尽快采取处理措施,减少或避免污染和损失。同时通过加强管理和环境监 测工作,为清洁生产工艺改造和污染处理技术进步提供具有实际指导意义的参考。

8.1 环境管理

加强环境管理和环境监测是执行《中华人民共和国环境保护法》等法规、条例、标准的重要手段,也是实现建设项目社会效益、经济效益、环境效益协调发展的必要途径。通过环境管理和环境监测,对本项目污染物排放实行监控,同时也为本地区的环境管理、环境规划提供依据。

8.1.1 环境管理机构和职责

本项目设置专人负责环保事务,主要负责环保方面的行政和技术管理工作,专职负责污染防治设施的正常运行,确保污染物排放达标,专职贯彻执行有关环保法规,掌握污染防治措施的运行效果,了解场区周围的环境质量变化情况。

环保机构管理人员应具备相应的素质、并应有一定权力,以履行如下职责:

- (1) 贯彻执行环保法规和标准:
- (2) 建立环保工作管理制度,并检查督促:
- (3)编制环保规划和计划并组织实施;
- (4) 领导并组织环境监测,建立监控档案;
- (5) 负责污染项目的环境影响评价及报批;
- (6) 负责环保教育和技术培训;
- (7) 组织开展环保科研、推广利用先进技术和经验;
- (8)制定污染物排放控制指标和环保设施运转指标,并做好考核和统计。

8.1.2 环境管理行动计划

1、报告制度

按《建设项目环境保护管理条例》中的规定,本项目在正式投产前,应向负责审批 的环保部门提交"环境保护设施竣工验收报告",经验收合格并发给"环境保护设施验收 合格证"后,方可正式投产。

项目建成后应严格执行月报制度。即每月向当地环保部门报告污染治理设施运行情况,污染物排放情况以及污染事故、污染纠纷等情况。

企业排污发生重大变化、污染治理设施改变或生产运行计划改变等都必须向当地环 保部门申报,经审批同意后方可实施。

2、污染处理设施的管理制度

对污染治理措施和管理必须与生产经营活动一起纳入企业的日常管理中,要建立岗位责任制,制定操作规程,建立管理台账。有关污染物排放监测记录以及其他相关记录应至少保存3年,并接受当地环保部门的检查。

3、危险废物的管理制度

按照危险废物相关导则、标准、技术规范等要求,严格落实危险废物环境管理与监测制度,对项目危险废物收集、贮存、运输、利用、处置各环节进行全过程环境监管。

列入《国家危险废物名录》附录《危险废物豁免管理清单》中的危险废物,在所列的豁免环节,且满足相应的豁免条件时,可以按照豁免内容的规定实行豁免管理。

4、奖惩制度

企业应设置环境保护奖惩制度,对爱护环保设施,节能降耗、改善环境者给予奖励; 对不按环保要求管理,造成环保设施破坏。环境污染和资源、能源浪费者给予重罚。

8.2 污染物排放清单

本项目污染物排放清单详见下表。

表 8.2-1 项目污染物排放清单一览表

类别	污	 染 源	污染物名 称	产生浓度(废水 mg/L,废气 mg/m³)	产生量 (t/a)	排放浓度(废水 mg/L,废气 mg/m³)	排放量 (t/a)	治理措施	执行标准
			颗粒物	23.79	5.220	0.24	0.036		(DB44/27-2001)中第二时段二级标准 与(GB 9078-1996)表 2"干燥炉、窑" 中的二级标准的较严值
	喷漆废		VOCs	43.57	8.017	4.36	0.802	7 然后和两千发 1、起通过 一 级水喷淋+干式过滤+沸石转轮	(DB44/814-2010) 表 1 排气筒 VOCs
	气、天然	G1	二甲苯	6.25	0.994	0.63	0.099	级小喷M+干式过滤+洗石转来 吸附-脱附+催化燃烧"废气处	排放限值(II时段)
	气燃烧	G1	臭气浓度	/	/	/	/	理设施进行处理,处理后引至	(GB14554-93) 中表 2 相应排放限值
	废气		SO ₂	0.10	0.010	0.10	0.010	40m 排气筒排放; 天然气燃烧	/
			NO_x	0.97	0.096	0.97	0.096	一 废气经排气筒直排	/
			烟气黑度	/	/	/	/)及【红针【问旦针	(GB 9078-1996) 表 2 "干燥炉、窑" 中的二级标准
	木工粉 尘	G2	颗粒物	2.82	1.116	0.03	0.011	收集并经"布袋除尘器"处理 后引至 40m 排气筒排放	(DB44/27-2001)中第二时段二级标准
	打磨废	G3	颗粒物	334.99	57.484	50.25	8.623	收集并经"水帘柜"处理后引至 40m 排气筒排放	(DB44/27-2001)中第二时段二级标准
废气	胶水废 气	G4	VOCs	3.68	0.182	1.84	0.091	收集并经"活性炭吸附"处理 后引至 40m 排气筒排放	(DB44/814-2010) 表 1 排气筒 VOCs 排放限值(II时段)
	,		臭气浓度	/	/	/	/	一 万主 40m 排气同排放	(GB14554-93) 中表 2 相应排放限值
	打磨废	G5	颗粒物	55.83	19.161	8.37	2.874	收集并经"水帘柜"处理后引至 40m 排气筒排放	(DB44/27-2001)中第二时段二级标准
	木工粉 尘	G6	颗粒物	2.61	0.517	0.03	0.005	收集并经"布袋除尘器"处理 后引至 40m 排气筒排放	(DB44/27-2001)中第二时段二级标准
			颗粒物	30.46	15.631	0.19	0.077	收集并经水帘柜除漆雾,然后 和烘干废气一起通过2套"二	(DB44/27-2001)中第二时段二级标准 与(GB 9078-1996)表 2"干燥炉、窑" 中的二级标准的较严值
	喷漆废		VOCs	53.42	20.586	5.34	2.059	级水喷淋+干式过滤"处理后一	(DB44/814-2010) 表 1 排气筒 VOCs
	气、天然	G7	二甲苯	8.04	2.981	0.80	0.298	并经"沸石转轮吸附-脱附+催	排放限值(II时段)
	气燃烧	G/	臭气浓度	/	/	/	/	化燃烧"废气处理设施进行处	(GB14554-93) 中表 2 相应排放限值
	废气		SO_2	0.04	0.010	0.04		理,处理后引至 40m 排气筒排	/
			NO _x	0.42	0.096	0.42	0.096	放; 天然气燃烧废气经排气筒	/
			烟气黑度	/	/	/	/	直排	(GB 9078-1996) 表 2"干燥炉、窑" 中的二级标准

类别	ΫŢ		污染物名 称	产生浓度(废水 mg/L,废气 mg/m³)	产生量 (t/a)	排放浓度(废水 mg/L,废气 mg/m³)	排放量 (t/a)	治理措施	执行标准
	木工粉 尘	G8	颗粒物	2.82	1.116	0.03	0.011	收集并经"布袋除尘器"处理 后引至 40m 排气筒排放	(DB44/27-2001)中第二时段二级标准
	打磨废	G9	颗粒物	167.49	57.484	25.12	8.623	收集并经"水帘柜"处理后引 至 40m 排气筒排放	(DB44/27-2001)中第二时段二级标准
	胶水废 气	G10	VOCs	3.68	0.182	1.84	0.091	双集并经"活性炭吸附"处理 后引至 40m 排气筒排放	(DB44/814-2010) 表 1 排气筒 VOCs 排放限值(II时段)
	,		臭气浓度	/	/	/	/	一万五40m 排(同347)X	(GB14554-93) 中表 2 相应排放限值
	打磨废	G11	颗粒物	55.83	19.161	8.37	2.874	收集并经"水帘柜"处理后引至 40m 排气筒排放	(DB44/27-2001)中第二时段二级标准
	木工粉 尘	G12	颗粒物	2.61	0.517	0.03	0.005	收集并经"布袋除尘器"处理 后引至 40m 排气筒排放	(DB44/27-2001)中第二时段二级标准
	UV 喷涂		颗粒物	269.03	27.360	0.54	0.055	废气收集并经过滤棉除漆雾, 然后和烘干废气一起通过"水	
	线喷漆 废气	G13	VOCs	50.58	5.109	22.76	2.299	喷淋+干式过滤器+活性炭吸附"废气处理设施进行处理,	(DB44/814-2010) 表 1 排气筒 VOCs 排放限值(II时段)
			臭气浓度	/	/	/	/	处理后引至 40m 排气筒排放	(GB14554-93) 中表 2 相应排放限值
	胶水废 气	G14	VOCs	6.00	0.059	3.00	0.030	收集并经"活性炭吸附"处理	(DB44/814-2010) 表 1 排气筒 VOCs 排放限值(II时段)
	~		臭气浓度	/	/	/	/	后引至 40m 排气筒排放	(GB14554-93) 中表 2 相应排放限值
			VOCs	/	4.183	/	4.183	做好废气收集措施	(DB44/814-2010)表2无组织排放监
			二甲苯	/	0.479	/	0.479	做好废气收集措施	控点浓度限值
	厂界	无组织	颗粒物	/	25.235	/	8.795	做好废气收集措施	(DB44/27-2001)中第二时段无组织排 放监控浓度限值
			臭气浓度	/	/	/	/	做好废气收集措施	(GB14554-93) 中表1相应排放限值
	厂区内	厂区内无组 织	NMHC	/	/	/	/	做好废气收集措施	(DB44/2367-2022) 表3厂区内VOCs 无组织排放限值
			污水量		9900		9900		预处理执行广东省地方标准《水污染物
			COD_{Cr}	285	2.822	40	0.396] 食堂废水经隔油隔渣、生活污	
废	生活污	生活污水排	BOD ₅	100	0.990	10	0.099		时段三级标准; 杏坛污水处理厂尾水执
水	水	放口	NH ₃ -N	28.3	0.280	5	0.050		行《城镇污水处理厂污染物排放标准》
			SS	200	1.980	10	0.099		(GB18918-2002) 一级 A 标准及广东
			LAS	20	0.198	0.5	0.005		(OD10)10-2002/

类别	沪		污染物名 称	产生浓度(废水 mg/L,废气 mg/m³)	产生量 (t/a)	排放浓度(废水 mg/L,废气 mg/m³)	排放量 (t/a)	治理措施	执行标准
/44			TN	39.4	0.390	15	0.149		省地方标准《水污染物排放限值》
			TP	4.1	0.041	0.5	0.005		(DB44/26-2001)第二时段一级标准较严值,尾水排入北马河后汇入顺德支流
	生产废水	委外处理	污水量		1516.8		1516.8	委托有相应工业废水处理能力 的单位回收处置,不外排	
		木加工	木边角 料、布袋 收集的粉 尘		2147.23 4		0		
		废气治理	喷淋沉渣 (金属粉 尘)		32.913		0		
	一般固度	粉尘沉降	地面清扫 粉尘		6.220		0		《中华人民共和国固体废物污染环境 防治法》、《广东省固体废物污染环境 防治条例》、《佛山市工业固体废物污
		原材料包装	一般原料 废包装物		2.000		0		以石泉内//、《历山巾工业回体及初行 染环境防治条例》
固			布料、真 皮边角料		5.000		0		
废		脉冲式布袋 除尘器	废布袋		0.400		0		
		金属原材料 加工	金属边角 料		2.800		0		
		油漆、固化 剂、稀释剂使 用过程	包袋佣		11.841		0		
	危险废物	手工喷漆、喷 枪清洗、设备 清理、设备维 护过程	废抹布手		0.500		0	委托有相应危险废物处理资质 的单位处置	《危险废物贮存污染控制标准》 (GB18597-2023)
		水帘柜、喷淋 塔	废漆渣		122.723		0		
		废气治理	废过滤棉		43.305		0		

类	沾	≕沈冰百	污染物名		产生量		排放量	治理措施	执行标准
别	污染源		称	mg/L,废气 mg/m³)	(t/a)	mg/L,废气 mg/m³)	(t/a)	但無用爬	7人17 4小1年
		废气治理	废活性炭		39.598		0		
			废润滑油						
		设备维护	和废润滑		0.120		0		
			油桶						
		废气治理	废沸石		1.400		0		
		废气治理	废催化剂		0.5		0		
	员工生		生活垃						
	火工王 活	办公、就餐	圾、餐厨		363		0	0 委托环卫部门统一清运	/
	4白		垃圾						

8.3 环境监测计划

8.3.1 环境质量监测计划

根据《环境影响评价技术导则 生态影响》(HJ19-2022),本项目的建设和运营对陆生生态环境基本没有影响,且本项目用地范围内已不存在自然植被,不涉及国家公园、自然保护区、世界自然遗产、重要生境、自然公园或生态红线等生态敏感区,周边没有天然林、公益林、湿地等生态保护目标,因此不考虑进行生态监测。

项目生活污水预处理后排入杏坛污水处理厂进行处理,产生的有机废水委托有相应 工业废水处理能力的单位回收处置,项目无废水直接排放,项目营运期无需对地表水环境进行监测。

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)、《环境影响评价技术导则 地下水环境》(HJ610-2016)、《环境影响评价技术导则 地下水环境》(HJ610-2016),本项目营运期环境质量监测计划见下表。

监测类别	监测点位	监测项目	监测频次	执行标准	监测方
大气环境	下风向最近 环境保护目 标	TSP、TVOC、 非甲烷总烃、 二甲苯	③TVOC 每天监测 1 次,每次	改单(生态环境部公告 2018年第29号)二级标准; 《环境影响评价技术导则 大气环境》 (HJ2.2-2018)附录D;	
地下水环境	场地下游	pH、二甲苯、 石油类	每年1次,共采样1次	《地下水质量标准》 (GB/T14848-2017)III 类标准。	进行
土壌	厂房三附近	间二甲苯+对 二甲苯、邻二 甲苯、石油烃 (C ₁₀ -C ₄₀)、 pH 值	每3年一次	《土壤环境质量 建设用 地土壤污染风险管控标 准》(GB36600-2018) 中二类用地筛选值	

表 8.3-1 环境质量监测计划表

8.3.2 污染源监测计划

为了落实废水、废气的达标排放及污染物排放总量控制,应制定环境监测计划以监督污染防治设施的运行。监测计划建议如下:该项目的废气为稳态排放,噪声源的波动也不大,因此,废气与噪声的监测频率相对不用太高。由于废气监测仪器设备要求比较高,技术难度也较大,监测工作可由当地环境监测站按当地污染源管理监测的要求定期进行;废气、废水和噪声的自行监测频次按照《排污许可证申请与核发技术规范 家具制造工业》(HJ 1027-2019)、《排污单位自行监测技术指南 涂装》(HJ 1086-2020)及《排污许可证申请与核发技术规范 工业噪声》(HJ 1301-2023)的要求。

8.3.2.1 大气污染源监测计划

表 8.3-2 大气污染物的监测计划

监测点位置	监测频率	监测项目	控制标准
喷漆废气(G1、 G7 排气筒)	每年一次	m NMHC、苯、甲苯 与二甲苯合计、臭 气浓度、 $ m SO_2$ 、 m NOx、烟气黑度	总 VOCs、苯、甲苯与二甲苯合计执行广东省地方标准《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)表 1 中的排气筒(II时段)排放限值; NMHC 执行广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 1
喷漆废气(G13 排气筒)	**	颗粒物、总 VOCs、 NMHC、臭气浓度	(DB44/27-2001) 中第二时段二级标准与 (GB
胶水废气(G4、 G10、G14 排气 筒)	每年一次	总 VOCs、NMHC、 臭气浓度	9078-1996)表 2"干燥炉、窑"中的二级标准的较严值;臭气浓度执行《恶臭污染物排放标准》(GB14554-93)表 2中相应标准;烟气黑度执行《工业炉窑大气污染物排放标准》(GB9078-1996)表 2"干燥炉、窑"中的二级标准
打磨废气(G3、 G5、G9、G11 排气筒)	每年一次	颗粒物	《大气污染物排放限值》(DB 44/27-2001)第二
木工粉尘 (GG2、G6、 G8、G12 排气 筒)	每年一次	颗粒物	时段二级标准
项目上下风向 边界		总 VOCs、颗粒物、 苯、甲苯、二甲苯、 臭气浓度	颗粒物执行广东省地方标准《大气污染物排放限值》(DB 44/27-2001)第二时段无组织排放监控点浓度限值;总 VOCs、苯、甲苯、二甲苯执行广东省地方标准《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)表 2VOCs 无组织排放监控点浓度限值;臭气浓度执行《恶臭污染物排放标准》(GB14554-93)厂界标准值中新扩改建项目二级标准
	半年一次(任意 监控点处任意一 次浓度值)	NMHC	广东省《固定污染源挥发性有机物综合排放标准》 (DB44/2367-2022)表 3 厂区内 VOCs 无组织排 放限值

8.3.2.2 水污染源监测计划

根据《排污许可证申请与核发技术规范 家具制造工业》(HJ 1027-2019)、《排污单位自行监测技术指南 涂装》(HJ 1086-2020),单独排入城镇集中污水处理设施的生活污水不需监测,因此本项目可不开展生活污水自行监测。

表 8.3-3 水污染物监测计划一览表

监测点位	监测指标	监测频次	
监例尽位	血火则1月775	间接排放	
雨水排放口	pH 值	月	
备注: 雨水排放口有流动水排放时按月	监测。若监测一年无异常情况,只	「放宽至每季度开展一次监测。	

8.3.2.3 噪声污染源监测计划

监测布点: 厂界

监测项目: 等效连续 A 声级

监测时间:每季度一次,项目夜间不生产,仅昼间进行监测,根据监测结果分析设备运行状态、运行噪声。

8.3.2.4 土壤跟踪监测计划

应加强企业管理,做好废水治理设施、污水管道、危险废物、危险化学品、生产车间的防渗措施,定期巡查或检查,防止出现跑冒滴漏等现象,根据运行情况,若发现企业发生存在长期渗漏的区域且怀疑土壤受到污染时,建议必要时采取跟踪监测。

8.3.2.5 固体废弃物管理计划

应严格管理该公司运营过程中产生的各种固体废弃物,定期检查各种固体废弃物的 处置情况,并说明废物的去向和资源化情况。针对危险废物,应对其收集、贮存、运输、 利用、处置各环节进行全过程环境监管,并记录在案。

8.3.2.6 监测数据分析和管理

环境监测数据对以后的环境管理有着重要的价值,通过这些数据可以看出以后的环境质量的变化是否与预期结果相符,为今后制订或修改环境管理措施提供科学依据,建立环境监测数据的档案管理和数据库管理,编写环境监测分析评价报告。具体要求如下:

(1) 报告内容: 原始数据(包括参数、测点、监测时间和监测的环境条件、监测

单位)、统计数据、环境质量分析与评价、责任签字。

(2)报告频率:每季度提交一份监测报告和一份综合报告、每年提交一份总报告。

8.4 社会公开的信息内容

(1) 信息报告

建设单位应编写自行监测年度报告,年度报告至少应包含以下内容:

- ① 监测方案的调整变化情况及变更原因;
- ② 企业及各主要生产设施(至少涵盖废气主要污染源相关生产设施)全年运行天数,各监测点、各监测指标全年监测次数、超标情况、浓度分布情况;
 - ③ 按要求开展的周边环境质量影响状况监测结果;
 - ④ 自行监测开展的其他情况说明:
 - ⑤ 排污单位实现达标排放所采取的主要措施。
 - (2) 信息公开

建设单位自行监测信息公开内容及方式按照《企业事业单位环境信息公开办法》(环境保护部令第 31 号)及《国家重点监控企业自行监测及信息公开办法(试行)》(环发〔2013〕81 号)执行。

8.5 排污口规范化

根据国家标准《环境保护图形标志—排放口(源)》和国家环保总局《排污口规范化整治要求(试行)》的技术要求,企业所有排放口(包括水、气、声、渣)必须按照便于采样、便于计量监测、便于日常现场监督检查的原则和规范化要求,设置与之相适应的环境保护图形标志牌,绘制企业排污口分布图,排污口的规范化要符合环境监察部门的相关要求。

1、废气排放口

根据本项目各污染物排放情况和排污口设置情况分析,本项目设 <u>14 个</u>工艺废气排污口。

企业须按照《排污单位污染物排放口监测点位设置技术规范》(HJ 1405-2024)的要求,对厂区内所有废气规范合理设置,绘制企业排污口分布图,并纳入企业环境管理,制定相应的管理办法和规章制度,并选派责任心强、有专业知识和技能的兼、专职人员

对排污口进行管理和维护。以上内容建设单位均向社会公开。

2、固定噪声源

按规定对固定噪声源进行治理,并在对外界影响最大处设置标志牌。噪声排放源标志牌应设置在距选定监测点较近且醒目处。环境保护图形标志牌上缘距离地面2米。

3、固体废物

工业固废和生活垃圾应设置专用堆放场地,有防扬散、防渗漏等措施。危险废物应设置专用堆放场地,并必须有防扬散、防流失、防渗漏等防治措施。固废专用堆放场地的环境保护图形标志牌设置位置应距固体废物贮存场较近且醒目处,并能长久保留。一般工业固废和生活垃圾贮存场设置提示性环境保护图形标志牌;危险废物堆放场地设置警告性环境保护图形标志牌。环境保护图形标志牌上缘距离地面2米。

8.6 竣工环境保护"三同时"验收一览表

根据"三同时"制度的管理要求,在项目竣工环境保护验收中,应首先对环境保护设施进行验收,包括环境保护相关的工程、设备、装置、监测手段等。但在实际的环境管理中,除了这些环境保护设施之外,更重要的是环境管理的软件,即保证环境设施的正常运转、工作和运行的措施,也要同时进行验收和检查。验收内容详见下表。

表 8.6-1 本项目竣工环境保护"三同时"验收项目一览表

	项目	治理设施	执行标准
	油性漆喷 涂、烘干废 气(G1、G7 排气筒)	喷淋+干式过滤+ 沸石转轮吸附-脱 附+催化燃烧"废	总 VOCs、二甲苯执行广东省地方标准《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)表 1 中的排气筒(II时段)排放限值; NMHC 执行广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 1 挥发性有机物排放限值; 臭气浓度执行《恶臭污染物排放标准》(GB14554-93)表 2 中相应标
	天然气燃烧 废气(G1、 G7 排气筒)	直排	准;颗粒物执行(DB44/27-2001)中第二时段二级标准与(GB9078-1996)表2"干燥炉、窑"中的二级标准的较严值;烟气黑度执行《工业炉窑大气污染物排放标准》(GB9078-1996)表2"干燥炉、窑"中的二级标准
废气	UV 漆喷 涂、烘干废 气(G13 排 气筒)	过滤棉+水喷淋+ 干式过滤器+活性 炭吸附	总 VOCs、二甲苯排放执行广东省地方标准《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)表 1 排气筒 VOCs 排放限值中II 时段排放限值要求,颗粒物执行广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准,臭气浓度执行《恶臭污染物排放标准》(GB14554-93)中表 2 相应排放限值
	打磨废气 (G3、G5、 G9、G11 排 气筒)	水帘柜	颗粒物执行广东省地方标准《大气污染物排放限值》 (DB44/27-2001)第二时段二级标准
	木工粉尘	布袋除尘器	颗粒物执行广东省地方标准《大气污染物排放限值》

	(G2, G6,		执行标准				
C			(DB44/27-2001) 第二时段二级标准				
	G8、G12 排						
<u> </u>	气筒)						
	胶水废气		VOCs 执行广东省地方标准《家具制造行业挥发性有机化合物排				
	(G4,G10,	活性炭吸附	放标准》(DB44/814-2010)表 1 排气筒 VOCs 排放限值中Ⅱ时				
	G14 排气		段排放限值要求,臭气浓度执行《恶臭污染物排放标准》				
_	筒)		(GB14554-93) 中表 2 相应排放限值				
	食堂油烟	油加洛儿鬼	油烟废气排放标准执行《饮食业油烟排放标准(试行)》				
	(G15、G16	油烟净化器	(GB18483-2001) 大型标准				
-	排气筒)		总 VOCs、二甲苯执行广东省地方标准《家具制造行业挥发性有				
			机化合物排放标准》(DB44/814-2010)表 2 无组织排放监控点				
			浓度限值要求。颗粒物执行广东省地方标准《大气污染物排放限				
		做好废气收集设	值》(DB44/27-2001)颗粒物第二时段无组织排放监控浓度限值;				
P	无组织废气	施	臭气浓度无执行《恶臭污染物排放标准》(GB14554-93)中表 1				
		~ _	中的新改扩建厂界二级排放限值。厂区内 NMHC 执行广东省《固				
			定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 3				
			厂区内 VOCs 无组织排放限值				
座水	生活污水	三级化粪池、隔油	广东省《水污染物排放限值》(FB44/26-2001)第二时段三级标				
		隔渣池	准				
噪声	咸震、降噪	减震基础、隔声、	《工业企业厂界环境噪声排放标准》(GB12348-2008)中 3 类标				
/\\/	等噪声治理	消声	准: 昼间≤65dB (A); 夜间≤55dB (A)				
			减量化、资源化、无害化;危险废物在厂内暂存应符合《危险废物股际表演》 (GD10507 2022) 竹馬者 明天出居(
	日本从里江	危废暂存点、一般 工业固废暂存点	物贮存污染控制标准》(GB18597-2023)的要求;一般工业固体 废物管理应遵照执行《中华人民共和国固体废物污染环境防治				
固废	回及处重以 施	工业固废暂存点	法》、《广东省固体废物污染环境防治条例》、《佛山市工业固				
	ЛE	等	体废物污染环境防治条例》的要求,贮存过程应满足相应防渗漏、				
			防雨淋、防扬尘等环境保护要求。				
		(1) 规范布局设置	置固定的可燃气体探测器,进行连续探测,实现可燃气体泄漏的探				
	2		体探测器采用固定式探头。				
			l。定期对天然气等输送管道进行检查, 防止天然气输送管道泄漏。				
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	夏,防止泄漏物外溢,配备泄漏吸附砂和收集桶。车间、危废间保				
凤	险措施		物积聚。为防止消防废水外溢,在外排雨水口设置截止阀(并辅				
		助堵气袋、截止阀、砂包等措施),使用地下车库收集事故废水,地下车库做好防					
		渗措施。					
		(4) 危险废物暂存	字间: 危险废物暂存间设置围堰,做好防渗措施。				
		(5) 废气处理设施	按规范进行有机废气治理设施安全设计,规范喷淋塔等有机空				
			度,加强废气处理设施的维护、监控。				

9环境影响评价结论

9.1 项目概况

广东阅生活家居科技有限公司选址位于广东省佛山市顺德区杏坛镇光华村德彦大道 1 号之一,中心地理坐标:北纬 22.783161°,东经 113.118682°。公司于 2023 年 6 月以"广东阅生活家居科技有限公司总部基地建设项目"为项目名称申报了环境影响报告表,并取得主管部门审批,审批文号为佛环 03 环审〔2023〕40 号,审批占地面积为43231.60 平方米,总建筑面积 121825.8 平方米,审批规模为:年产套房家具 40000 套、软装家具 18000 套、装饰材料 7000 套。

截至目前为止,原报批项目没有正式投入生产运行。考虑到市场发展及实际生产需要,企业拟调整产品种类和产量,使用的涂料从水性漆变更为油性漆和 UV 漆,并相应变更生产设备。因项目产能、原料及生产工艺等发生重大变动,阅生活公司以"广东阅生活总部基地建设项目"名称重新报批环评文件。变动后项目建设地点、占地及建筑面积保持不变,产能变更为年产套房家具 9 万件、装饰材料 1 万件、全屋定制产品 5 万件。

本项目总投资 30600 万元,环保投资约 1140 万元。本项目员工人数为 800 人,厂区内设有食堂、宿舍,每天工作共 10 小时,年工作 330 天。

9.2 环境质量现状

1、大气环境质量现状

根据《佛山市生态环境局顺德分局关于发布<2023 年度佛山市顺德区生态环境状况公报>的通知》(佛环顺函〔2024〕44号〕,O3(臭氧)浓度超过了《环境空气质量标准》(GB3095-2012)及 2018 年修改单中的二级标准限值,其他五项污染物指标浓度均达到《环境空气质量标准》(GB3095-2012)及 2018 年修改单二级标准限值。因此,顺德区大气环境质量属不达标区。在7天的监测时间内,本项目评价区域内TVOC、NMHC、二甲苯、TSP、臭气浓度、NOx等污染物均达到了相应环境空气质量标准中的要求。

2、地表水环境质量现状

根据佛山市生态环境局公布的2021~2023年度佛山市各主要水环境控制单元控制水体水质达标情况,顺德支流控制断面水质均达标;根据佛山市生态环境局公布的2022~2024年度水质监测数据和市控考核断面水质情况,北马河控制断面水质均达标。

纳污水体北马河水质满足《地表水环境质量标准》(GB3838-2002)之V类水功能要求。

3、噪声环境质量现状

根据监测结果,厂界监测点位均满足《声环境质量标准》(GB3096-2008)中3类 声环境质量标准,评价区域内声环境状况良好。

4、地下水环境质量现状

根据地下水监测结果,项目周边地下水监测点指标均符合《地下水质量标准》(GB/T 14848-2017)中III类水质标准。

根据广东省地下水环境功能区划,本项目所在区域为维持现状,不属于开发利用和保护区,项目通过采取地下水保护措施后,不会对区域地下水水质产生明显影响。

5、土壤环境质量现状

从监测结果可知,项目附近区域▼1、▼2符合《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618-2018)相应筛选值,其余点位符合《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)第二类用地筛选值标准。

6、生态环境现状调查

本项目所在地位于佛山市顺德区杏坛镇,人为活动频繁,且项目评价范围内大部分土地已经开发利用或已经平整待建,原有植被被人工景观植被代替。在本次调查中,未发现珍稀濒危的动植物,未发现国家重点保护的动植物。

9.3 污染物排放情况

1、废水

本项目生产废水为水帘柜废水、喷淋塔废水,均委托区内有相应工业废水处理能力的单位回收处置,不外排。故项目外排废水主要为生活污水。项目食堂废水经隔油隔渣、生活污水经三级化粪处理达标后通过市政管道排入杏坛污水处理厂。

2、废气

本项目产生的废气污染物包括喷漆废气、天然气燃烧废气、木工粉尘、打磨废气、 胶水废气、食堂油烟。本项目建议实施总量控制的大气污染物指标如下:

类别	7	总量控制指标 t/a		
		有组织	5.371	
	VOCs	无组织	4.183	
废气		合计	9.554	
	二氧化硫	有组织	0.021	
	氮氧化物	有组织	0.193	

3、噪声

本项目产生的噪声主要来自生产过程中主体工程设备运转时产生的噪声,以及辅助设备如空压机、各种风机运转时产生的噪声,其噪声级约为 60~90dB(A),采取隔声、减震措施后,并经距离衰减后,预计项目厂界噪声可达到《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准要求。

4、固体废弃物

项目一般工业固废分类收集后交由相关回收单位回收利用;危险废物分类收集交由有相应类别资质的单位处理;其他固废待项目投产后根据鉴别结果进行相应的管理和处置;生活垃圾委托环卫部门统一清运。

9.4 环境影响及环保措施

1、水环境影响分析及防治措施

喷漆废气治理设施中喷淋塔装置废水、水帘柜废水经沉淀清渣处理后循环使用,定期更换,交由区内有相应处理能力的工业废水处理单位处理;打磨房废气(包括木磨、油磨)治理设施水帘柜废水经沉淀清渣处理后循环使用,定期更换,交由区内有相应处理能力的工业废水处理单位处理。综上,项目生产废水均不外排。项目外排废水主要为生活污水。从 6.1 章节可知,项目生活污水的预处理措施、有机废水委外处理措施在技术和经济上均具有可行性。

员工生活污水经化粪池预处理、食堂废水经隔油隔渣处理后,达到广东省地方标准《水污染物排放限值》(DB44/26-2001)中第二时段三级标准后排放,通过污水管网排入杏坛污水处理厂处理,污水厂尾水排入北马河后汇入顺德支流,项目不会对周围水环境造成太大影响。

2、大气环境影响分析及防治措施

(1) 喷漆废气(G1、G7、G13)

项目手工喷涂废气主要污染物为总 VOCs、颗粒物、二甲苯和臭气(以臭气浓度表征),厂房二油性漆喷漆废气收集并经水帘柜除漆雾,然后和烘干废气一起通过"二级水喷淋+干式过滤+沸石转轮吸附-脱附+催化燃烧"废气处理设施进行处理,处理后引至40m 排气筒 G1 排放;厂房三油性漆喷漆废气收集并经水帘柜除漆雾,然后和烘干废气一起通过2套"二级水喷淋+干式过滤"处理后一并经"沸石转轮吸附-脱附+催化燃烧"废气处理设施进行处理,处理后引至40m 排气筒 G7 排放。

UV 喷涂线主要污染物为总 VOCs、颗粒物和臭气(以臭气浓度表征),厂房二 UV 漆喷涂废气收集并经过滤棉除漆雾,然后和烘干废气一起通过"水喷淋+干式过滤器+活性炭吸附"废气处理设施进行处理,处理后引至 40m 排气筒 G13 排放。

以上废气中总 VOCs、二甲苯有组织排放可达到广东省地方标准《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)表 1 排气筒 VOCs 排放限值中II时段排放限值要求,G13 颗粒物有组织排放可达到广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准,G1、G7 颗粒物可达到(DB44/27-2001)中第二时段二级标准与(GB 9078-1996)表 2 "干燥炉、窑"中的二级标准的较严值,臭气浓度可达到《恶臭污染物排放标准》(GB14554-93)中表 2 相应排放限值。

(2) 天然气燃烧废气(G1、G7)

催化燃烧装置使用天然气加热辅助供能,天然气燃烧废气经排气筒 G1、G7 排放。颗粒物、烟气黑度可达到《工业炉窑大气污染物排放标准》(GB 9078-1996)表 2 "干燥炉、窑"中的二级标准。

(3) 打磨废气(G3、G5、G9、G11)

打磨房废气主要有木磨粉尘、油磨粉尘、五金抛光粉尘,木磨粉尘、油磨粉尘收集并经"水帘柜"处理后引至 40m 排气筒 G3、G5、G9、G11 排放,颗粒物有组织排放可达到广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准。

(4) 木工粉尘(G2、G6、G8、G12)

木材加工过程中会产生一定量的木屑粉尘,木加工粉尘收集并经"布袋除尘器"处理后引至 40m 排气筒 G2、G6、G8、G12 排放,颗粒物有组织排放可达到广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准。

(5) 胶水废气(G4、G10、G14)

项目冷压和拼板工序使用的白乳胶,贴绵过程使用水性胶水,上述胶水使用过程中会产生少量的有机废气和臭气,主要污染物为总 VOCs 和臭气(以臭气浓度表征),胶水废气收集并经"活性炭吸附"处理后引至 40m 排气筒 G4、G10、G14 排放,其中总 VOCs 有组织排放可达到广东省地方标准《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)表 1 排气筒 VOCs 排放限值中II 时段排放限值要求,臭气浓度可达到《恶臭污染物排放标准》(GB14554-93)中表 2 相应排放限值。

(6) 食堂油烟(G15、G16)

项目食堂产生的油烟经油烟净化器处理后,由楼顶排气筒 G15、G16 排放。企业设

两个厨房,排气罩灶面总投影面积均为 7m²>6.6m²,食堂油烟可达到《饮食业油烟排放标准(试行)》(GB18483-2001)中表 2 大型规模排放标准值。

(7) 无组织废气

总 VOCs、二甲苯无组织排放可达到广东省地方标准《家具制造行业挥发性有机化合物排放标准》(DB44/814-2010)表 2 无组织排放监控点浓度限值要求。颗粒物无组织排放可达到广东省地方标准《大气污染物排放限值》(DB44/27-2001)颗粒物第二时段无组织排放监控浓度限值;臭气浓度无组织排放可达到《恶臭污染物排放标准》(GB14554-93)中表 1 中的新改扩建厂界二级排放限值。

厂区内 NMHC 可达到广东省《固定污染源挥发性有机物综合排放标准》 (DB44/2367-2022)表 3 厂区内 VOCs 无组织排放限值。

根据预测结果:

- ①正常排放时预测因子 SO_2 、 NO_2 、 NO_3 、 PM_{10} 、 $PM_{2.5}$ 、非甲烷总烃、TVOC、TSP、二甲苯在网格点及环境空气保护目标处**短期浓度贡献值**占标率均小于 100%:
- ②正常排放时预测因子 SO_2 、 NO_2 、 NO_3 、 PM_{10} 、 $PM_{2.5}$ 、TSP 在网格点及环境空气保护目标处**年均浓度贡献值**占标率均小于 30%;
- ③ PM₁₀、TSP、SO₂、NO₂、PM_{2.5}、NOx 叠加现状浓度、已批在建拟建源后的保证率日平均浓度均能符合环境空气质量标准;
- ④ PM_{10} 、 SO_2 、 NO_2 、 $PM_{2.5}$ 叠加现状浓度、己批在建拟建源后的年平均浓度均能符合环境空气质量标准;
- ⑤非甲烷总烃、NOx、二甲苯叠加现状浓度、已批在建拟建源后的 1h 平均浓度均能够符合环境空气质量标准;
- ⑥TVOC 叠加现状浓度、已批在建拟建源后的 8h 平均浓度均能够符合环境空气质量标准。
- ⑦在非正常工况下,评价范围内各污染物的最大地面小时浓度贡献值均有所增加,对周边环境有一定影响。为了减少对周围敏感点的影响,建设单位必须加强废气处理措施的日常运行维护管理,定期检修废气处理设施,确保其达标稳定排放。
- ⑧本项目所有污染物对厂界外短期贡献浓度均未超过质量标准,无需设置大气环境防护距离。

综上,项目总体大气环境影响可接受,不会对周围大气环境造成太大影响。

3、声环境影响分析及防治措施

本项目运营后噪声主要来源于生产过程中主体工程设备运转时产生的噪声,以及辅助设备如空压机、各种风机等运转时产生的噪声,其噪声级约为70~90dB(A)。

从预测结果可知,项目运营期间,设备采取降噪措施后,项目厂界噪声排放达到《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准,本项目对周围声环境影响很小。

4、固废环境影响分析及防治措施

本项目分类收集、回收、处置固体废物的措施安全有效,去向明确。经上述"减量化、资源化、无害化"处置后,可将固废对周围环境产生的影响减少到最低限度,本项目不会对周围环境产生明显的影响。

5、环境风险影响分析结论

项目主要环境风险物质包括油性底漆(含二甲苯、环己酮)、油性面漆(含二甲苯)、油性漆固化剂(含乙酸乙酯)、UV漆稀释剂(含乙酸乙酯)、异丙醇、润滑油、废润滑油、天然气等,其储存量小,风险潜势为 I,环境风险评价为简单分析。通过简单分析,主要环境风险为泄漏和火灾次生灾害以及废气事故排放。项目风险物质储存量少,在储存单元均采取了风险控制措施,其环境风险总体是可控的

6、土壤环境影响分析结论

项目危险废物储存区等均严格按照《危险废物贮存污染控制标准》(GB18597-2023)有关规范设计,废水收集管道、生产车间等各建构筑物按要求做好防渗措施,项目建成后对周边土壤的影响较小。废气排放对周边土壤环境中的二甲苯的贡献浓度较低,运行30至50年后,各污染物在土壤中的累积仍小于《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中的筛选值(第二类用地)要求,项目对周边土壤环境影响较小。

7、生态环境影响分析结论

本项目陆域用地不涉及自然保护区、自然遗迹、人文遗迹、风景名胜区、珍稀或濒危野生动物栖息地、饮用水源保护区等陆域生态敏感目标。因此,本项目的建设和运营对陆生生态环境基本没有影响。

9.5 环境影响经济损益分析结论

结合本工程的社会经济效益、环保投入和环境效益进行综合分析得出,本项目在创造良好经济效益和社会效益的同时,经采取污染防治措施后,对环境的影响较小,能够

将工程带来的环境损失降到可接受程度。因此,本项目可以实现经济效益与环保效益的相统一,项目的建设从环境、经济效益角度而言是可行的。

9.6 环境管理与监测计划

项目按照相关规定要求,切实落实好报告制度、污染处理设施管理制度、奖惩制度、监理环境管理体制等措施,落实好相关环境管理工作。此外,项目按照环境监测计划对项目的排污情况进行委托定期监测,定时报由当地环境保护管理部门进行管理。

9.7 公众意见采纳情况

建设单位本次公众参与按照《环境影响评价公众参与办法》(生态环境部令 第 4 号)要求进行环境影响评价信息公开,通过网上公示,张贴,登报纸等形式,充分收集公众意见。

本项目在首次公开环境影响评价信息期间和征求意见稿公示期间未收到公众关于本项目的反馈意见。

9.8 综合性评价结论

广东阅生活家居科技有限公司广东阅生活总部基地建设项目的建设符合国家和广东省产业政策的要求;符合所在地"三线一单"管控方案要求。符合广东省、珠三角地区、佛山市等各级环境保护规划的要求;项目在营运期会产生一定的废水、废气、噪声和固体废弃物等污染,本项目通过采取可行的污染防治措施,可实现废水、废气、噪声、固体废物的达标排放;项目合理布局,减少对周围环境影响;在落实本报告提出的各项污染防治措施和风险防范措施的前提下,整体环境风险可控,环境保护措施经济技术可满足长期稳定达标要求;项目的建设与项目所在区域的环境功能要求相符合,按要求落实环境管理与监测计划,不会对区域环境质量造成明显影响。项目在建设规模、总平面布置、环境保护方面是可行的,将会取得良好的环境效益。

从环境保护角度而言, 本项目的建设可行。

	BROWN (MAD) - THE PARTY OF THE					SESSERSE		BRA (EY)							
(成成) () () () () () () () () (HANGE TORIS				II FAR	Consideration			2840 115077			109/9, 109 2029	e. mee		
	- 1	HEADING AND	Texo	1	3,	M. Addition			SECURITIES OF THE PERSON NAMED IN COLUMN NAMED	N DE		Stock Carried and	66		
	C1000000000000000000000000000000000000	STATE OF THE PARTY		ž	4.0	MIC CAN		Ř.	\$110 GE	09.8	2001				
	2 20	GRADITA GRADITA	58 C 655	95	History	K092	25.70	25.700 60		ANGERTANO ADLA HORA		X KR\$6923			
	988-050 (80770 988-050 97(38 6-350(700 (808)4000)		100mm 10		200		100 per - 32	NAT WENT	おされば TRARE (イス)			HOUSEN			
					工程和指示 工程和指示	REK UHXXXXX		190° 442	410000	EXMINATORS	86-58 DG-937 88-500-59 5000-69-600-6000		DIGUTTS		
河南南西南	849			250	######################################				QNTR	187908 E84018408	HA PRINTS UP ENGINEERS			PROGRESS	V (ID)
	as.		DESERVED OF STREET			300000 (N/4)	S-0892 NRM -10.81		DENG-BS-DAT	3.98100± (6.4)		(0.00,000 (4.9)		40.485	
			C32 8.6								COX	50	×		
			5/4 5/6 0							-		-			=
			8 8												
			及交叉等 医水管管(水管管)												
		Tib.	SE320 R			U109000					X450000	Xesk	.001		
	81		ERR BRED ERR			6.001 5.00 31.90					000 000 3498	5.X	14		
			Канляв			6.01					3.00	32			
			Mi M												
1-1			XORN INSTRUMENT	MR CRISE		166		1-164-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	YHSHY	90	17 4949	Trans. Co.		-	
Sies	LUMIC MINIST	24601					601	PROPERTY.	BOX. DO		8859	古町新町 (全部)	Carl woll is Date will a		
	ALCO II.		TO THE MINEY.					- 3	-SEYE. SE SECE.	FR. 95FR	8 0		Date and the	e silica)	-
			36		SHEET STATES	1826	- Carren	7				толи	Danceson w	e street	-
		79/3 2	50 (00 to 50 (40 to	50001 5001	7000	N N	*********		1		255	88.00	88(6)	103113	
		1 1	06. 354 844	IK.	9 194 11,379 36 363		Woods and Woods	NOCASSAN							
		1	613 66	м.,	90(14) 3380	*	Markin Pvo	E secs							
1900	appear.	5	0.00 0.00 0.00	8 8	95.801 95.801 94.603	*	Vocati Vocati	Boys.							
		0	DESCRIPTION OF THE PERSON OF T	(798)	1 3000	- 2	VWD.E								
		14 6 28	82 82 83		1000 200 5	1									
		10 18 10	*CR ***********************************	# P	- 60 180 150										
		30	61 61		38	- 1				-					
2 4		7534 01	SAUKE	\$100,000	P5.0851	1980000412	COURSESSE.	95.0851	236		1001-0000			HERE	
		952		20000	4	二級多数母/子式放射·养 石材物·暴斯·福尼斯拉	95,0% 36,6% 96,6%	- 1	индеац	Works CAME	43E 64G	8394 8394 8300	6,000 6,000	ODWINE 18 rooms	90 W.
		100	- 12	**	,	n#	00,0% 6 6	,	CARNER	87088 874 874	616	8,000 8,000	668	1001000.00	
		1	Œ	**	1	48548 488	SSANS MAN		Maria 1704	95/A/2 95/0 95/0	cer	1004	do	100 W/W/100 C0044/03-200	(4) 中原
	YEVELO: 17:900 20	4	Ø.	-60	- 1	XNRRS -	30% 30%	1	NATE SAME	V003	305 133	2.60% 6.60%	600	CIDAMIA X CIDAMIA X CIDAMIA X	O Gentral
		-	8	4	- 1	*D078	3104 3304 3863		NOTEST AND A STATE OF THE STATE	900 300	903 010	6,650 6,665 6,660	008 609	C094407.340 C094407.300 C094627.000	(4) 中華
Anosse merote white		40	æ		- 3	二是老母母-YA223-85 在我們-國際-他心理20	0000 0000 0000	-1	HEIEREIC	7000 248 8448	000	8369 8350	638	4 STANDORD CONTRACTOR	0001 (B) N T D
						AM	0		exmost	90. 90. 94.57	004 081	6 690. 6 800.	666	1	
		+	Ø Ø	#0 #0	1	40020 400	0004 0.04	1	AND THE MASS	200 m	30 30 30	3629	660	Construction Construction	(d) + 9 (d) + 10
		N II	G)	**	1	50258 602	KOL HOL	1	9001. 1980. 15 20 930.	8498.X	ÚT.	600	184	CONSTRUCTOR CONTROLOGY COMMEDICATI	1000 A100 1000 A
		0	G5		1	ASHEB MRR-F-F-DIM -UHJMS	90% 90%		OVEREZ OVEREZ	3000 3000 7000	004 034 23.96	6,005 8,006 1,005	600 600 138	(D66607-00) (D66607-00) (D66608-00)	(株) 中間 (株) 中間
		н	Q/A	*0	7	GRESS	11.0% 6.0% 5.0%	- 1	Reck	8000 8000	100	6,690	com	CONTRACTOR OF THE CONTRACTOR O	1) PUBC 9601 (P)
		en ca to		+618100135		- W	843	(HALL	HNSK IS	1275	HOURIN	7886		Nelson, Ny	
	22248			27*800		5/00) = 1/8 3/88 8/00/7		4	9 93		(1044年4月10) 和艾克克斯拉斯拉克克克斯 (1044年1月10) 中国公司在艾克斯特拉斯的联系统				
X .	-	ELEG STOR HEURE SEAS STA		-	Service A	000000000000000000000000000000000000000	7		CONTRACT CANOCITEMENT CONTRACTOR OF TANCCITEMENT CONTRACTOR OF TANCCITEMENT						
見書数	PERS	-30	naner	3.0		1616 (\$16)	×fc	10,400 10,400	9939		KRONX	B984 (807)	場合をつれる。	misson	E NOVE
	ARBIT OF	1	HERTON	5.293	STREE	(4, 94)	48	5/4	SWINES NO.		KERRE	(1923 19716)	204 (0.4)	19308	375
	5850 (0 585)	100 cm	11807-036	15 257 15	marz	Septimental services	Ø);	· · · · · · · · · · · · · · · · · · ·	X9		liamet.	Daniel (Marie)	TREE CONT.	19208	sta.
	angu	i meg	AUGH. AUGUM MY	ANI ANI		INDESCRIPTION OF THE PERSON OF	ERRENO	DACES.	P#2554	E98A	no	Kins .	HEER	TE	yd8
	· 在工业资本 电行		現実協議 (高級数型) 総高級性数型 一般製品を見せる	25 to	1156.2	- 1		23.61 6.1%	3	- 1		-	1		5
- 015		-	4H. 用版状包件 医4W	466 278	DATE:	1	1	5.60 6.40	-1-	3		-	1		8
6年8年		1	を発しられ おおをごの見れ おおもて含	75. 4 75. 4	5. 55		200 M Leb 800 M Leb	1.90 11.94 0.40		-		-	1	- 7	200
40		-							_						-
40	non	1	SUME SUME SUMS	200.0	enane en	T T	900-253-27 200-263-47 900-260-40	40.00 30.00	SECRETAIN	1100		1	1		000

声明

根据《中华人民共和国环境影响评价法》、《中华人民共和国行政 许可法》、《建设项目环境影响评价政府信息公开指南(试行)》(环办 (2013) 103 号)、《环境影响评价公众参与办法》(生态环境部令 第 4号),特对环境影响评价文件(公开版)作出如下声明:

我单位提供的<u>广东阅生活家居科技有限公司广东阅生活总部基</u> <u>地建设项目环境影响报告书</u>(公开版)不含国家秘密、商业秘密和个 人隐私,同意按照相关规定予以公开。

本声明书原件交环保审批部门,声明单位可保留复印件